Skip to main content
Markus Schneider

Prof. Dr. rer. nat. Markus Schneider

Head of the Institute for Artificial Intelligence
Focus: Artificial Intelligence, Machine Learning, Intelligent Robotics
Faculty for Electrical Engineering and Computer Science
Phone
Email markus.schneider@rwu.de
Room E 112
On campus
Building E
Leibnizstr. 15
88250 Weingarten
Germany
Postal address RWU Hochschule Ravensburg-Weingarten
University of Applied Sciences
Prof. Dr. rer. nat. Markus Schneider
P.O. Box 30 22
88216 Weingarten
Germany

Publications

Schneider, Markus

Expected Similarity Estimation for Large-Scale Anomaly Detection. Open Access Repositorium der Universität Ulm. PhD Dissertation (2017). doi:10.18725/OPARU-4222

Schneider, M.

Probability Inequalities for Kernel Embeddings in Sampling without Replacement. in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016) 66–74 (2016).

Schneider, M., Ertel, W. & Ramos, F.

Kernel Embeddings for Large-Scale Anomaly Detection. in International Conference on Machine Learning (ICML 2016): Anomaly Detection Workshop (2016).

Schneider, M., Ertel, W. & Ramos, F.

Expected Similarity Estimation for Large-Scale Batch and Streaming Anomaly Detection. Machine Learning Journal 105, 305–333 (2016). doi:10.1007/s10994-016-5567-7

Schneider, M., Ertel, W. & Palm, G.

Constant Time EXPected Similarity Estimation for Large-Scale Anomaly Detection. in Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016) 12–20 (IOS Press, 2016). doi:10.3233/978-1-61499-672-9-12

Schneider, M., Ertel, W. & Palm, G.

Kernel Feature Maps from Arbitrary Distance Metrics. in KI 2015: Advances in Artificial Intelligence (eds. Hölldobler, S., Krötzsch, M., Peñaloza, R. & Rudolph, S.) 137–150 (Springer International Publishing, 2015). doi:10.1007/978-3-319-24489-1_11

Schneider, M., Ertel, W. & Palm, G.

Expected Similarity Estimation for Large-Scale Anomaly Detection. in Proceedings of the International Joint Conference on Neural Networks (IJCNN 2015) 1–8 (IEEE, 2015). doi:10.1109/ijcnn.2015.7280331

Schneider, M. & Ramos, F.

Transductive Learning for Multi-Task Copula Processes. in European Conference on Artificial Intelligence (ECAI 2014) 1089–1090 (IOS Press, 2014). doi:10.3233/978-1-61499-419-0-1089

Schneider, M. & Ertel, W.

Robot Learning by Demonstration with local Gaussian process regression. in Intelligent Robots and Systems (IROS 2010), 255–260 (2010). doi:10.1109/IROS.2010.5650949