Mini test regarding the lecture

"Circuit Analysis in Frequency and Time Domain"

Resources: script, calculator, mathematical formulary

Hints:

- Several answers are given to each question. <u>Only one</u> answer is correct.
- Make *only one* cross per problem.
- A problem is considered to be *properly* answered, if exactly one cross is placed at the right spot.
- If more than one cross is placed per problem, then the answer is considered as *wrong* and no points are given.
- Omitting a problem (no cross placed) yields no points as well.
- The achievable points for each problem are always indicated.
- Wrongly placed crosses do <u>not</u> result in penalty points.

(01) What is the correct expression to calculate the phase spectrum from a Fourier series?

Α	$\varphi_n = -\arctan \frac{b_n}{a_n}$	
в	$\varphi_n = -\arctan \frac{a_n}{b_n}$	
С	$\varphi_n = \arctan \frac{b_n}{a_n}$	1 point
D	$\varphi_n = \arctan \frac{a_n}{b_n}$	
Е	$\varphi_n = \arctan a_n - \arctan b_n$	

(02) A hidden half-wave symmetry in a time signal f(t) is sometimes difficult to detect, if

Α	the function $f(t)$ has zeros.	
В	f(t) has even symmetry as well.	
С	there is an additional steady component.	1 point
D	f(t) has odd symmetry as well.	
Е	the function contains steps.	

(03) The Gibbs phenomenon occurs in connection with

Α	a symmetrical triangular shaped function.	
В	sharp bends (knees) in $f(t)$.	
С	curvature changes in $f(t)$.	1 point
D	an unsymmetrical triangular shaped function.	
Е	steps in $f(t)$.	

A	half the values of the phase spectrum of the real Fourier series.	
в	values with different signs compared to phase spec- trum of the real Fourier series	
С	always positive values.	2 points
D	the same values as the phase spectrum of the real Fourier series.	
Е	twice the values as the phase spectrum of the real Fourier series.	

(05) The ripple factor is

Α	always greater than 1.	
В	only usefully definable, if there is a steady component.	
С	always less than 1.	2 points
D	always greater than the distortion factor.	
Е	never negative.	

(06) What is the effective value of a sine-shaped voltage signal?

Α	$U = \frac{\hat{u}}{\sqrt{2}}$	
В	$U = \hat{u} \sqrt{2}$	
С	$U = \frac{\hat{u}}{\sqrt{3}}$	1 point
D	$U = \hat{u}$	
Е	$U = \hat{u} \sqrt{3}$	

(07) What is $e^{j n \pi/2}$ for n = 3?

Α	j	
В	$e^{j\pi/2}$	
С	$e^{-j\pi/2}$	1 point
D	1	
Ε	$e^{j 5 \pi/2}$	

(08) Find the locations of the positive zeroes f_n of the function $\underline{F}(j\omega) = A\tau \operatorname{si}(\omega\tau/2)$ with $\omega = 2\pi f$ and n = 1, 2, 3, ...?

A	$f_n = 2n/\tau$	
В	$f_n = (2n-1)/\tau$	
С	$f_n = 1/\tau$	2 points
D	$f_n = n/\tau$	
Е	$f_n = 2/\tau$	

(09) The Fourier series coefficients of a periodic triangular function have

Α	a quadratic decline.	
В	a linear decline.	
С	a cubic decline.	1 point
D	no convergence.	
Ε	the same decline as the sawtooth function.	

Page 5

$$i_{0}(t) \approx R \qquad L \qquad i_{L}(t) \qquad u_{c}(t)$$

(11) The function $f(t) = \sin(\omega_1 t) + \sin(\sqrt{3} \omega_1 t)$

A	is periodic with $T = \frac{2 \pi}{\sqrt{3} \omega_1}$.	
в	is periodic with $T = \sqrt{3} \frac{2\pi}{\omega_1}$.	a • /
С	is not periodic.	2 points
D	is periodic with $T = \frac{2 \pi}{\omega_1}$.	
Ε	has two different periods.	

Page 6

For the Fourier coefficients of the related Fourier series the following statement holds:

Α	$a_n = 0$	
В	$a_0 = 0$	
С	$a_{2n-1} = 0$	2 points
D	$b_n = 0$	
Ε	$a_{2n} = 0$	

(13) The Fourier series of an average-free periodic rectangular function with even symmetry reads (provided the duty cycle is $\tau/T = 0.5$):

A	$f(t) = \sum_{n=1}^{\infty} a_{2n-1} \cos((2n-1)\omega_1 t)$	
В	$f(t) = \sum_{n=1}^{\infty} a_{2n} \cos(2n \omega_1 t)$	
С	$f(t) = \sum_{n=1}^{\infty} a_n \cos(n \omega_1 t)$	2 points
D	$f(t) = \sum_{n=1}^{\infty} b_{2n-1} \sin((2n-1)\omega_1 t)$	
Е	$f(t) = \sum_{n=1}^{\infty} b_{2n} \sin(2n \omega_1 t)$	

(14) The Fourier series of a periodic sawtooth function converges

Α	cubically.		
В	linearly.		
С	quadratically.	1 point	
D	uniformly.	-	
Е	frequency-dependent.		

(15) Which off the following functions has the property f(0) = 1?

А	$f(x) = \frac{x}{\sin x}$	
в	$f(x) = \frac{x}{\cos x}$	
С	$f(x) = \frac{x}{\cos^2 x}$	2 points
D	$f(x) = \frac{x^2}{\sin x}$	
Е	$f(x) = \frac{x}{\sin^2 x}$	

(16) The function $f(t) = \tan(\omega_1 t)$

Α	is limited.	
В	contains a DC component.	
С	is not periodic.	1 point
D	has a Fourier series with linear convergence.	
Ε	has no Fourier series.	

(17) Which symmetry has a function with the property f(-t) = -f(t)?

Α	no symmetry	
В	even symmetry	
С	half-wave symmetry	1 point
D	odd symmetry	
Ε	full-wave symmetry	

(18) The Dirac impulse $\delta(t)$

Α	is a function with odd symmetry.	
В	is limited.	
С	is the neutral element of multiplication.	1 point
D	does not at all come from Dirac.	
Ε	is the neutral element of convolution.	

Answer	Α	B	С	D	Ε	Points
Problem 01						/1
Problem 02						/1
Problem 03						/1
Problem 04						/2
Problem 05						/2
Problem 06						/1
Problem 07						/1
Problem 08						/2
Problem 09						/1
Problem 10						/4
Problem 11						/2
Problem 12						/2
Problem 13						/2
Problem 14						/1
Problem 15						/2
Problem 16						/1
Problem 17						/1
Problem 18						/1
Total						/28

Solutions