
1.  Introduction

Some recent publications [7,23,38] have shown up the possibility
of electromagnetic waves moving with superluminal velocities
higher than the vacuum speed of light c0. The group velocity,
which is the velocity of the peak of a narrowband wave packet,
has been found to become superluminal [24] in the case of
evanescent modes tunneling through a cutoff barrier (Fig. 1). For
broadband signals in dispersive transmission lines the frequency
dependent group velocity should better be replaced by the peak
velocity, which we will define later. However, the peaks of an in-
cident and a transmitted (or reflected) wave packet have no causal
relationship [32] and also the peak velocity may become superlu-
minal. This does not at all mean that information can also be
transmitted with superluminal speed. Since Sommerfeld and Bril-
louin [37] it has been known for a long time that no signal, energy
or information can travel faster than c0.

Not every mathematical quantity, which can be measured in m/s,
is always and in any case a physically meaningful velocity. Actu-
ally, the main problem with superluminality seems to be the
widespread unlucky use of non-causal velocity definitions and
their obvious inability to describe the tunneling of evanescent
modes through a cutoff barrier [6]. A pulse peak at superluminal
motion does neither contradict Einstein causality nor Lorentz in-
variance [15]. It is just a consequence of a dispersive reshaping of
the pulse form and therefore merely a simple distortion effect
[14].

It is pointless to argue about superluminality with no clear def-
initions of signal or information in mind. Some transmission ve-
locities (such as front, signal and energy velocity) can unambigu-
ously be defined [4,40], so that they never exceed c0. Other defin-
itions may occasionally be useful as long as they do not predict

superluminal velocities, otherwise they fail and their failure may
encourage to erroneous conclusions.

This contribution gives a summary of some common defini-
tions of velocities and delay times and discusses their causal or
non-causal properties. We treat the paradox of tunneling, the
analogy between the electromagnetic Helmholtz equation and the
quantum mechanical Schrödinger equation (including a brief look
at EPR-like composite quantum systems in entangled state) and
possible misinterpretations. Detailed numerical examples consid-
er some properties of lossy dispersive transmission lines as well
as the photonic tunneling of a wave packet through cutoff barriers
in rectangular waveguides.

2.  Dispersion, velocities and delay times

Only the vacuum of free space is nondispersive, while all other
material media or waveguides are dispersive [3]. Electromagnetic
waves propagating in a dispersive medium have a phase constant

with nonlinear dependence on frequency [30].
The phenomenon of dispersion gives rise to propagation veloci-
ties changing with frequency, which is the reason why the trans-
mission of broadband signals can lead to significant distortion ef-
fects.

2.1  Velocity definitions

Several different velocities are commonly used that were initially
defined to characterize the behavior of freely propagating waves
(Tab. 1). The phase velocity vph is the speed of a monochromatic
wave, which extends infinitely in space and time, whereas the
group velocity vgr describes the motion of the center of gravity
of a narrowband wave packet [1,30]. The front velocity vF al-
ways equals the vacuum speed of light c0 [34] and the energy ve-
locity vE that depends on the time-averaged Poynting vector
and the spatial energy density w can never exceed c0 [33,40].
Some other velocity definitions like quantile velocity, correlation
velocity or centro-velocity can be found in the literature [10,12].
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Superluminal Photonic Tunneling
in Inhomogeneous Waveguides

Tab. 1: Some common ways to define wave velocities [18].

Fig. 1: Air-filled rectangular waveguide with reduced cross section. 
The undersized segment with length l acts as a photonic barrier for
frequencies f < c0 /(2a2).

1 Hochschule für Technik, Wirtschaft und Sozialwesen Ravensburg-
Weingarten, University of Applied Sciences, Weingarten, Germany

Art.03_Kark  09.05.2005  11:30 Uhr  Seite 51



2.2  Signal transmission in dispersive media

The transmission behavior of true signals has first been studied by
Sommerfeld and Brillouin [37] and [3,35,36]. In a dispersive
medium – that allows waves to propagate – the rising edge of a
modulated source pulse with carrier or center frequency (actually
angular frequency) ω0 = 2π f0 always runs with front velocity c0.
This discontinuity is directly followed by the Sommerfeld fore-
runners (precursors) containing very high frequency components
with very small amplitudes. If the medium contains only one
electronic resonance ωe > ω0, the frequency of these first forerun-
ners decreases continuously until the characteristic frequency ωe

of the oscillating electrons is reached. The second (Brillouin)
forerunners follow with the reduced velocity depend-
ing on the permittivity of the medium. Their frequency is at first
very small, then increases constantly and finally arrives at the
center frequency ω0 of the signal. This moment marks the begin-
ning of the main part of the transmitted signal and is related to the
signal velocity vS, for which the relation vgr ≤ vS ≤ vF must hold -
provided we look at the case of freely propagating waves [3].
There is no clear mathematical definition for the signal velocity,
but vS is not far away from vE(ω0) (Tab. 1), if we take the energy
velocity at the carrier frequency ω0 of the source pulse. Both
types of forerunners and the main signal can partly overlap de-
pending on the length of the propagation path.

Contrary to the hitherto discussed case of freely propagating
waves, a loss-free evanescent medium permits all higher fre-
quency components ω > ωc (that lie above cutoff and build up the
first forerunners) to propagate with no attenuation, while the main
part of the spectrum (around ω0 < ωc) is evanescent and is thus ex-
ponentially suppressed according to e-α(ω0)z, since β(ω0) = 0 in a
loss-free tunneling region. So, phase and group velocity vph and
vgr will become infinite (see Tab. 1) and loose their physical
meaning. On the other hand, front, energy and signal velocity (vF ,
vE , vS) are still well defined and stay applicable for evanescent
modes – also useful are some delay time definitions that will be
discussed below.

2.3  Delay times

Linear, time-invariant (LTI) systems can be described by a com-
plex transfer function:

(1)

H (jω) = is the Fourier transform of h(t), which is called impulse
response and would be the system’s output signal if the input sig-
nal were a Dirac impulse δ(t) located at t = 0. In causal systems
the impulse response must vanish at negative times, i. e. h(t) ≡ 0
for t < 0. The magnitude and the phase spectra H(ω) and Φ(ω)
are real-valued even and odd continuous functions of ω, respec-
tively. Of course, no technical source can send out photons with
extremely high energies E = h-ω. Thus, quantum effects limit the
validity of the classical concept of purely continuous spectra.
However, this limitation arises only at exceptionally high fre-
quencies ω > E/h- , which are by far of no technical interest.

Using the phase spectrum Φ(ω), we define the phase delay and
the group delay as follows [39]:

(2)

With these delay times we get spatially averaged phase and group
velocities [9] for signals traversing a distance z:

(3)

Since both delay times (2) and both averaged velocities (3) de-
pend on frequency ω, they are not well suited to describe the mo-
tion of a localized wave packet covering a certain frequency
range. For such problems we better use center of gravity defi-
nitions that have more physical significance. We will derive them
on basis of a causal LTI system shown in Fig. 2 with h(t) ≡ 0 for
t < 0. Furthermore we will always assume the input signal to van-
ish at negative times, i.e. x(t) ≡ 0 for t < 0.

The output signal y(t) is found either by convolution or by spec-
tral domain methods [16]:

(4)

The centers of gravity for input and output signal

(5)

do not coincide, but differ by the center delay [21]

(6)

It can be shown [31] that th is identical to the group delay (2) com-
puted at ω = 0. Therefore (6) should only be applied to unmodu-
lated baseband signals in low pass transmission systems. For sys-
tems with high pass transfer functions – such as waveguide sys-
tems - the impulse delay

(7)

proposed by [22] is more useful. With Parseval’s relation [16] we
can show that ti can also be computed in the spectral domain:

(8)

Thus, ti results from a spectral averaging of the frequency depen-
dent group delay tgr(ω) and can be considered as a mean group
delay. It marks the energy center of the output signal y(t) for sys-
tems, which are excited by a Dirac impulse δ(t). More general
excitation functions will be discussed in the following.
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Fig. 2: Causal LTI system with input signal x(t), output signal y(t) and
impulse response h(t).
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2.4  Energy center and effective duration of a signal

Let us again consider the causal LTI system of Fig. 2 excited by a
real input signal x(t) vanishing at t < 0. We use the energy of the
signal

(9)

together with first and second moments

(10)

and define - according to [44] - the time position of the energy
center τx and the effective (quadratic) signal duration or time
spread dx:

(11)

The energy center τx lies in the immediate vicinity of the peak
value of x(t) and represents the classical particle position [44] as-
sociated with the quantum mechanical wave function ψ in (15),
provided that h-ω > V(z). The time shift between the energy cen-
ters of the output signal y(t) and the input signal x(t) will be called
peak delay tp. It may take positive or negative values:

(12)

It is worthy of note that tp equals ti, if we consider the special case
x(t) = δ(t), resulting in y(t) = h(t). But (12) is more general than
(7), since tp can be used for all kinds of input signals (vanishing
for negative times).

3.  Einstein causality and evanescent modes

All signals with finite duration have an unlimited spectrum and
necessarily suffer from dispersion. In loss-free media the wave
number k (ω) = β (ω) is real for the propagating part of the spec-
trum and imaginary for the evanescent part, i.e. k (ω) = – jα (ω).
Then, a signal is partly delayed (with changing phases) and partly
weakened (with constant phases), respectively. The “propaga-
tion” of evanescent modes over a distance z seems to take no
time, which leads to the paradox of tunneling (see below). The re-
sulting distortions of the pulse shape – following from frequency
selective damping – can be mistaken for a loss of causality. For
later convenience, we extend (12) to spatially distributed systems
with length z. Einstein causality requires the output signal to
vanish until the very first wave front has arrived with the vacuum
speed of light c0:

(13)

Thus, we get the peak delay for z ≥ 0:

(14)

3.1  The paradox of tunneling

The front of any causal signal y(t) according to (13), which has an
unlimited frequency band due to Fourier transform, travels with
vF = c0 (Tab. 1). On the other hand the peak of this signal may
travel with superluminal velocity when crossing a photonic barri-
er [23]. This peak is located in the neighborhood of the energy
center τy(z). Using the peak delay (14) we can define a spatially
averaged peak velocity v—p (z) = z/tp(z), quite similar as we did in
(3). Every tunneling region with suitable length z can produce a
value of  v—p (z)  that is higher than c0. The peak velocity, which is
obviously not a genuine signal velocity, must not be confused
with the energy velocity  vE (ω), defined in Tab. 1.

Although it may happen that the peak velocity is superluminal,
i.e.  v—p (z) > c0, the principle of Einstein causality is never viola-
ted, because of y(t) ≡ 0 for t < z/c0. The peaks of the pulses in front
and behind the evanescent barrier have no causal relationship
[32]. Thus, cause and effect cannot be interchanged and back-in-
time communication, which would imply a change of chronologi-
cal order, is impossible. In addition, no portion of energy can
travel faster than light, since vE (ω) ≤ c0 applies for all frequen-
cies. What we really see, if the peak velocity is superluminal, is
just a shift of the energy center towards the front of the signal.
This distortion effect – due to the high pass filter characteristic of
the evanescent region – only leads to a simple pulse reshaping
and no physical conflict emerges.

Some authors argue that pulse reshaping should vanish for nar-
rowband or band-limited signals [25,27]. But this is only true for
strictly monochromatic signals (carrying no information at all) or
if we look at hypothetical distortion-free communication systems
(with transfer function H( jω) = Ke-jωt0) that firstly cannot be
realized and secondly have nothing to do with evanescent tunnel-
ing. Unimportant whether pulse reshaping occurs or not, the sig-
nal velocity is always limited by the vacuum speed of light, i. e. 
vS ≤ vF ≤ c0.

3.2  The quantum mechanical analogy

We consider the Schrödinger equation for the quantum mecha-
nical wave function ψ of a non-relativistic particle with mass m
and total energy E = h-ω moving in a nonuniform medium with
potential V(z):

(15)

For h-ω > V(z) we find propagation in a dispersive medium, while
h-ω < V(z) describes a damped wave packet tunneling through a
potential barrier. Let us now compare (15) with the scalar
Helmholtz equation for the longitudinal magnetic field com-
ponent of a TE waveguide mode:

(16)

The popular use of the formal analogy relating (15) and (16) –
particularly the connection between tunneling particles and cutoff
modes in waveguides – has led to serious confusion in the litera-
ture. The (Lorentz invariant) transmission of truly relativistic
electromagnetic modes through a photonic barrier has been com-
pared with the (Galilei invariant) quantum mechanical tunneling
of non-relativistic particles through an energy band gap [24]. But
this overstressed photon-particle analogy is obviously inap-
propriate [28] and may be one reason for fundamental misinter-
pretations. 

Some really strange statements in the literature [25,26] such 
as – “evanescent modes have nonlocal properties and consequent-
ly are not fully describable by Maxwell’s equations, or evanes-
cent modes have negative energy and therefore cannot be mea-
sured, or evanescent modes are not Lorentz invariant, or evanes-
cent modes have a superluminal signal velocity and violate Ein-
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stein causality” – are in fact totally absurd and have already been
proven to be false [4,11,19,29,42].

Composite quantum systems in entangled state, which consist
of two spatially separated EPR-like correlated subsystems (EPR
means Einstein-Podolsky-Rosen), may have peculiar properties
[41]. The measurement, carried out in one subsystem, induces in-
stantaneous changes of the other [2] - no matter how large their
mutual distance actually will be - why this phenomenon has also
been called “spooky interaction at a distance”. The nonlocal inter-
action of two entangled photons can only be described by a set of
two coupled Schrödinger equations and therefore has no compa-
rable electromagnetic analogy at all. Even in the peculiar world of
quantum mechanics such nonlocal EPR effects cannot be used
for superluminal transmission of information [5]. There seems to
be a superior principle in quantum mechanics and also in electro-
dynamics that prevents superluminal information or signal or en-
ergy transport.

4.   Numerical examples

4.1  Homogeneous waveguide with lossy walls

Before covering inhomogeneous waveguide structures, we will
discuss a dispersing wave packet (in form of a TE10 mode with
cutoff frequency ωc = co π/a), traveling in positive z-direction
through a homogeneous air-filled rectangular waveguide with fi-
nite wall conductivity κ (Fig. 3).

First of all, a sharp cutoff exists only in loss-free waveguides
[43,45]. Then, the low-frequency part of the spectrum (ω ≤ ωc) is
purely evanescent, while all frequencies above cutoff (ω > ωc) are
purely propagating. This situation can be described by a complex
wave number:

(17)

On the other hand, a realistic waveguide with ohmic losses due
to finite wall conductivity κ has no sharp cutoff, but rather a
gradual transition between evanescent and propagating state.
For good wall conductivity κ >> ωε0 there is also a small phase
constant β below ωc and a small attenuation constant α above ωc.
Mainly in the vicinity of ωc Eq. (17) is no longer valid and a more
sophisticated treatment is needed, which takes the coupling be-
tween TE and TM modes into account. Thus, we finally arrive at
a better approximation of the complex wave number for a TE10

mode in rectangular waveguides with lossy walls [8], applicable
for all frequencies ω:

(18)

Both constants α and β must be positive and δ = �����2/(ωµ0κ) is
the skin depth of the metallic walls. Eq. (18) cannot be found by
ordinary power-loss methods, but is the result of a more compli-
cated Ritz technique in connection with variational principles [8].
We solve (18) for α and β in the case of a standard R100 alu-
minum waveguide (a = 22,86 mm, b = 10,16 mm and κ = 36 · 106

S/m). In particular, we get α(ωc) ≈ 0,868 and β(ωc) ≈ 2,095,
which is in contrast with the result α(ωc) = β(ωc) = 0 of the more
simple theory (17). Using the attenuation per unit length 
d = 20 lgeadB/m = 8,686 α dB/m, the frequency dependence of 
d and β is shown in Fig. 4.

With the phase constant β(ω) from Fig. 4 we can easily compute
the phase velocity vph = ω/β and the group velocity vgr = dω/dβ
Both results are shown in Fig. 5. Above cutoff (ω> ωc), the 
well-known Borgnis relation vph vgr = c2

0 is met. Below cutoff 
(ω < ωc), both velocities may become superluminal.

Let us now consider an input signal x(t) with rectangular enve-
lope of normalized amplitude 1, carrier frequency f0 = 10 GHz
and duration 1 ns, with τx = 0,5 ns according to (11), fed in a stan-
dard R100 aluminum lossy waveguide (a = 22,86 mm, b = 10,16
mm and κ = 36 · 106 S/m) at position z = 0. The causal output sig-
nal y(t) after a distance z ≥ 0 follows from (4) and (13):

(19)
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Fig. 3: Homogeneous air-filled rectangular waveguide – with ohmic
losses due to wall currents.

Fig. 4: Attenuation per unit length d and phase shift per unit length β
for a TE10 mode in a R100 rectangular aluminum waveguide.

Fig. 5: Phase and group velocity of a TE10 mode in a R100 rectangular
aluminum waveguide.
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using a high pass transfer function H ( jω) = e-jk(ω)z (see Fig. 6)
with k(ω) according to (18).

With (19) we get the output signal y(t) at a distance z = 10 m,
shown in Fig. 7, which has been determined with a computer
code adapted from [17].

The first forerunners – with very high frequency components at
low amplitudes – arrive at t = z/c0 ≈ 33,36 ns. Using (14) we get
the energy center τy(z = 10 m) = 45,51 ns, which is located in the
main part of the signal – a short time after the pulse peak. With 
τx = 0,5 ns  and the peak delay tp(z) = τy(z) – τx ≈ 44,65 ns we get
the spatially averaged peak velocity of the energy center:

(20)

which is comparable with the TE10 group velocity, computed at
carrier frequency f0 = 10 GHz:

(21)

Essentially, Fig. 7 shows that y(t) is widely spread and dispersed.
Its effective (quadratic) duration or time spread follows from (11):

(22)

A detailed investigation of R100 waveguides with various
lengths, but always excited by the same input signal x(t), leads to
an asymptotic approximation of the time spread (with d0 =
0,288 ns) that is accurate to < 4,4 %  for all z > 2,3m:

(23)

Thus, the effective duration of a wave packet is increasing with
distance z. Its mean attenuation α– can be found by comparison
between input and output energy:

(24)

which is very similar to the attenuation at the carrier frequency
α(ωo) ≈ 0,016 m-1 that can directly be found using (18). We
should mention that the attenuation of the main peak value is
much higher, namely 20 lg (1/0,47) ≈ 6,56 dB (see Fig. 7), which
is a consequence of the large number of minor peaks in y(t).

4.2  Dielectrically loaded waveguides

As we already stated for homogeneous waveguides, the phase and
the group velocity may easily become higher than c0 (Fig. 5).
Hence, superluminal values of vph and vgr are in no way useful to
describe the transport of energy or information. Once again, we
will demonstrate this with a loss-free rectangular R100 wave-
guide that consists of three homogeneous sections. Sections (1)
and (3) are filled with a loss-free dielectric material (εr = 2,56)
and section (2) is an air gap of length l = 5 cm (Fig. 8). The wave-
guide is excited at z = –100 cm by an input signal x(t) with cosine
squared envelope of normalized amplitude 1, carrier frequency 
f0 = 6 GHz and duration 4 ns. Thus, x(t) consists of 24 temporal pe-
riods and has its energy center τx = 2 ns exactly in the middle. The
carrier frequency f0 was chosen to fulfill the condition fc,1 < f0 < fc,2

with the cutoff frequencies of the air section fc,2 = 6,557 GHz and
the dielectric section fc,1= fc,2 / ��εr = 4,098 GHz.

The exact solution must satisfy the boundary conditions at z = 0
and z = l, respectively and can be found in [18,19]. The spatial
movement of a cosine squared wave packet is shown in Fig. 9 us-
ing discrete time steps ∆ t = 454,5 ps.

With the phase velocity in the dielectrically loaded sections (1)
and (3) we get the guide wavelength at carrier frequency:

(25)
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Fig. 6: Dispersive high pass waveguide system with causal output
signal y(t) at position z ≥ 0.

Fig. 7: Output signal y(t) at position z = 10 m in a R100 rectangular alu-
minum waveguide resulting from an input TE10 signal x(t) at z = 0 with
rectangular envelope of normalized amplitude 1, duration 1 ns and car-
rier frequency 10 GHz (high above the cutoff frequency 6,557 GHz).

Fig. 8: Dielectrically loaded rectangular waveguide with an air gap 
(tunnel) of length l = 5 cm
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While the Brillouin precursors propagate with velocity 
c = c0 /��εr , they move about c∆ t ≈ 8,517 cm ≈ 1,992 λ1 per each
time step. We call attention to the fact that 24 temporal periods in
x(t) only lead to nearly 17,5 spatial periods in y(z). This reduction
is due to the difference between phase velocity (25) and precursor
velocity:

(26)

Especially, we are interested in the time dependence of the sig-
nals  y(t, z = 0) at the beginning and  y(t, z = l)  at the end of the
cutoff barrier. After tunneling through the air gap the output sig-
nal is considerably weakened and has been enlarged twenty times
for graphical reasons (Fig. 10).

For  y(t, z = 0) we get a peak value of almost 2, since there is a su-
perposition of incident and reflected waves. The energy centers
and the time spreads for the signal y(t, z = 0) just in front of the
barrier and for the signal y(t, z = 5 cm) directly behind the barrier
are shown in Tab. 2.

The peak delay

(27)

is sometimes understood as tunneling time or dwell time of the
evanescent wave packet in the air gap. However, in order to avoid
misinterpretations, the peak delay should be better considered as
a measure for distortions of the pulse shape [14]. It is worth men-
tioning that tP(l) significantly depends on the tunnel length l. Us-
ing (20) and (27) we get the spatially averaged peak velocity of
the energy center, when crossing a tunnel of length l = 5 cm:

(28)

The peak velocity is superluminal, no doubt about it. However,
the peaks of the wave packets in front and behind an evanescent
barrier are not causally related. While tunneling, there merely
happens a shift of the energy center towards the front of the sig-
nal. This distortion effect only leads to a simple reshaping of the
pulse envelope. The very first front of  y(t, z = 5 cm)  arrives at 
tF = l/c0 ≈ 167 ps (see Fig. 10). Hence, causal propagation at ex-
actly the vacuum speed of light c0 is guaranteed, even for evanes-
cent modes in cutoff barriers.

As well as the peak velocity v—p (l), also the phase velocity
v—ph (l,ω)  and thegroup velocity  v—gr  (l,ω)  can become superluminal when
crossing the barrier. To demonstrate this, we consider the phase
difference Φ(ω) between the transmitted wave at z = l = 5 cm and
the incident wave at z = 0. For frequencies in the evanescent range
ωc,1 < ω < ωc,2 with ωc,2 = c0π/a and ωc,1 = ωc,2 /��εr we use the
expression given in [18]:

(29)

with the phase and attenuation constants of the waveguide sec-
tions (1) and (2):

(30)

For sufficiently large damping, e.g. α2 l ≥ 2, the phase function
(29) will become independent of the barrier length l, since coth
(α2l) → 1. Under this assumption, we insert (30) in (29) and 
derive

(31)
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Fig. 9: Spatial distribution of a cosine squared wave packet y(z)
incident at a cutoff barrier of length l = 5 cm.

Fig. 10: Time signals y(t) at z = 0 and behind the air gap at z = l = 5 cm
(see Fig. 8).

Tab. 2: Position of energy centers and time spreads for the signals of
Fig. 10.
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Differentiating (31) with respect to ω yields the group delay (2),
valid for 1/��εr

< ω/ωc,2 < 1:

(32)

At carrier frequency f0 = 6 GHz we find a group delay 
tgr(ω0) ≈123 ps, which is truly independent of the barrier length l
(if α2l ≥ 2) and can consequently only result from localized phase
shifts at the barrier boundaries. The same effect of universal tun-
neling time (also with reference to group delay) has been proven
for quantum mechanical tunneling as well [13]. For that reason,
some authors [25] have argued that tunneling itself takes no time.
However, the group delay tgr(ω) and also the peak delay tp(l) are
inappropriate measures for evanescent modes. A correct descrip-
tion should rather use the front delay tF(l) = l/c0, which always in-
creases with barrier length and defines the genuine propagation
time. So, tunneling is not at all instantaneous but definitely time
consuming.

Using (2), (3), (31) and (32) we finally get the expected 
superluminal values (at the carrier frequency f0 = 6 GHz with 
α2l ≈ 2,77) for phase velocity and group velocity:

(33)

The superluminal results (33) are not really surprising, because
already Sommerfeld knew about possible problems arising in
connection with the definitions of phase and group velocity. He
considered the reactive near field (r < λ0/2) of a Hertzian dipole in
free space with stationary harmonic excitation and also found su-
perluminal values of vph and vgr, which even tend towards infinity
[20] for r → 0.

5.  Conclusions

To summarize, the phase, group and peak velocity are by no
means physically valuable quantities to describe the energy, sig-
nal or information transfer through cutoff barriers. The use of
these definitions should be restricted only to propagating waves.
They totally fail to explain the behavior of the energy transport
over evanescent modes and may lead to the erroneous conclusion
of propagation faster than c0. The tunneling of evanescent modes
can completely be described within the classical framework of
Maxwell’s equations and leaves no choice for further-reaching in-
terpretations. Exactly one century after its discovery by Einstein,
the special theory of relativity has once again shown its uncondi-
tional validity. As a rigorous result, the front velocity vF sets an
upper bound for the speed of information transfer. Consequently,
superluminal signaling turns out to be an illusion.
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� Buchbesprechung 

Antennen und Strahlungsfelder
von Klaus Kark, 391 Seiten, 244 Abbildungen, 71 Tabellen, 65 Übungsaufgaben
(durchgerechnet), Untertitel: Elektromagnetische Wellen auf Leitungen, im
Freiraum und ihre Abstrahlung, Vieweg-Reihe „Studium Technik“, Wiesbaden
2004, ISBN 3-528-03961-2, Preis € 27,90.

Der Autor, seit 1993 Professor der Hochfrequenztechnik an der Fachhochschule
Ravensburg-Weingarten, kann auf Erfahrungen aus Forschungsinstituten und der
Industrie zurückgreifen; es richtet sich an FH- und TU-Ingenieure/Studenten
(„vorlesungsbegleitend“) sowie Physiker in der Praxis. Der Band gliedert sich in
17 Kapitel, einem Literatur- und Sachwortverzeichnis. Nach der Einleitung (Fre-
quenzbereiche, Symbole, Antennenformen) folgen mathematische Grundlagen
(Vektoranalysis und deren Intergralsätze), wobei leider auf „grad, div, rot" nicht
verzichtet wird (redundant-doppelte Schreibweise zum Nabla-Operator: Kap. 8).
Kap. 3 bringt Elektrodynamik (Maxwellgleichungen) samt Rand- und
Stetigkeitsbedingungen, Relativitätssprinzip. Kap. 4: Ebene Wellen im freien
Raum, auf Leitern und Supraleitern; Kap. 5: Kugelwellenausbreitung,
Dopplereffekt bei Radar, wobei Kark einen „Fresnel'schen Mitführungseffekt“
(Zitat?) einführt; Welleneinfall auf (Mehr-)Schichten und Kanten (Beugung ohne
Erwähnung der GTD). Kap. 6 widmet sich den Wellenleitern (koaxial, Hohll.,
Streifenl.), wobei nicht vor „Orthogonalreihen-Entwicklung“ zurückgeschreckt
wird; hier sollte man bei „Wellentypen“ (S. 143) bleiben und „moden“ erwäh-
nen, „Oberwellen“ (S. 149, 343) statt „höhere Wellentypen“ sind hier falsch und
gehören anderswo hin! Unnötige Anglismen (wie Taperhohlleiter, statt ver-
jüngter; Direktivität/Richtfaktor, S. 273) könnten vermieden werden. Mit Kap.7

beginnt die Antennentechnik: ein isotroper Kugelstrahler (S. 152, 159, 256, 273)
ist ein „weisser Schimmel“, wäre also besser durch „oder“ zu trennen. Bei der
Antennenwirkfläche von Reflektoren (S. 167), d. h. deren „Flächenwirkungs-
grad“ wäre eine Notiz hilfreich, daß man Solches heute durchaus (im %-Bereich
genau) berechnen/integrieren kann. Kap. 8 bringt – gut gegliedert – Grundbe-
griffe von Strahlungsfeldern: wäre zu ergänzen, daß bei Phasenmessungen der
Fernfeldabstand (S. 189) das Vierfache des normalen (Leistungs-)Abstandes sein
kann. Kap. 9 überstreicht Elementardipole und Rahmenantennen samt Erwäh-
nung deren „Grenzradius“ und „Abschnürradius“ der Kugelwellen. 

Kap. 10 bezieht sich auf Lineare (Stab-)Antennen (endlicher Dicke), wobei
u. a. auf numerische Lösungen von (komplexen) Intergralgleichungen hinge-
wiesen wird – recht erstaunlich (?!) für eine FH-Vorlesung...Der „Verkürzungs-
faktor“ wird sehr anschaulich erklärt. In Kap. 11 folgen die unverkoppelten und
verkoppelten (auch „verdünnten“) Gruppenantennen (phased arrays). Bei Erwäh-
nung des „multiplikativen Gesetzes“ vermißt man das Nennen des Überlagerung-
sprinzps (der EM-Wellen) Kap. 12 geht auf die Diagramm- und Impedanz-Vari-
ante breitbandiger Antennen ein, wobei log-periodische Typen Rückwärtswellen
anregen. Kap. 13, 14 behandeln Hohlleiter- und Hornstrahler; warum kann eine
„Designgleichung“ (S. 342, 353) hier nicht schlicht Entwurfsgleichung sein?
Kap. 15, 16 beschäftigen sich mit Linsen- und Reflektorantennen. Das Buch
schließt mit Schlitz- und Plättchen-Antennen (patch), Kap. 17. Im Sach-
wortverzeichnis ist Einiges ergänzbar. Insgesamt gesehen stellt der Band ein sehr
modernes und nützliches Buch für die genannten Zielgruppen dar (Übungsauf-
gaben!) und ist sogar als Nachschlagewerk benutzbar. Es ist ihm in Fachkreisen
weite Verbreitung zu wünschen.

Rudolf Wohlleben, Bonn/Bad Kreuznach
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