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A General Theory on the Graphical Representation
of Antenna-Radiation Fields

KLAUS W. KARK ano ROLAND DILL

Abstract— A general theory for graphical representation of antenna
radiated fields is developed. The application of the method to the spe-
cial case of a transverse electromagnetic (TEM)-mode-excited biconical
antenna is investigated in detail. Electric field lines in the r — 2 plane of
a spherical coordinate system are presented in a manner such that the
same electric flux is always carried between two neighbering field lines.
Thus their mutual distance is a criterion for the strength of the local
electric field. The differential equations, which govern the displacement
of a field point, are derived and solved. The time-dependent evolu-
tion of a field-line pattern is examined in detail. The new theory for
graphical field representation permits, in an elegant manner, the anal-
ysis of the transmission and receiving mechanism of arbitrary antenna
configurations. Thus an iterative graphical synthesis procedure could, in
the future, be applied for computer-aided design modeling of antenna
shapes.

I. INTRODUCTION

IELD-LINE PATTERNS can be applied to estimate the

rate of convergence of mode-matching methods. At first
sight it can be determined how closely the given boundary con-
ditions can already be satisfied with the actual chosen number
of modes. Field-line patterns, which show the local strength
of the antenna field, can also be used to improve the quality
of a given antenna. For instance, the noise temperature of a
receiving antenna can be decreased by increasing the conduc-
tivity of the boundary of the antenna, where the field strength
can reach very high values; i.e., where the field-line density
is comparatively high.

Classical antenna design seldom uses field-line information
since the numerical effort is quite high; the field strength must
be computable with high accuracy at every point of space. But
effective computer-aided design modeling of antenna shapes
applying graphical synthesis procedures will become more and
more important in the future since the available computers will
become faster and will have larger memory units.

For certain waveguide and antenna configurations, where
the integrability condition is met [1], the standard procedure
for contour-line plotting of equipotential lines can be applied
to obtain field-line patterns [2]. If this is not the case, a more
general technique for field-line representations must be ap-
plied. For field-line plotting in waveguides a detailed review
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Fig. 1. The biconical antenna: longitudinal section in meridional r — v/ plane.
o is center angle of the antenna aperture. The spherical surface at r =1
defines the junction between the inner and the outer part of the antenna.

of hitherto existing methods has been given by Moller and
MacPhie [3].

We have developed a new general theory on the graphi-
cal representation of antenna radiated fields. To demonstrate
the behavior of the new technique. a biconical antenna was
chosen since its geometrical boundaries can be described as
coordinate surfaces of the spherical coordinate system. and the
mathematical analysis is therefore rather simple. Transmitting
and receiving properties of biconical antennas have been in-
vestigated rigorously [4] using mode-matching techniques (or-
thogonal expansion methods). Rather good approximations for
input impedance, directivity, and far-field directional patterns
of the transverse electromagnetic (TEM)-mode-excited bicon-
ical antenna can even be found. if only a few modes are taken
into account for numerical computations {5]. [6]. {7]. For a
graphical near-field representation, however. a more precise
field description is necessary.

II. MATHEMATICAL CONSTRUCTION OF FIELD-LINE PATTERNS

In this section, the general procedure for the construction
of field-line patterns is explained. For mathematical simplicity
the special case of a TEM-mode excited biconical antenna (see
Fig. 1) is treated, where only two-dimensional electric field
lines occur. The described method is nevertheless applicable
to three-dimensional field-line patterns of arbitrary antennas as
well. The knowledge of the field strength at arbitrary space
points is the only presupposition for the application of our
method. We calculate the field strength by means of a mode-
matching procedure, which is well suited to the considered
antenna structure.
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Then the field-line differential equation is derived and nu-
merically solved, and a graphical field representation is finally
given. For arbitrary starting points an infinite set of different
field lines can be generated. However, for graphical reasons
it is more convenient to choose only certain starting points.
Assuming that the same electric flux is always carried between
two neighboring field lines, a recurrence relation is derived
to determine suitable starting points. Thus the distance be-
tween two field lines is a criterion for the strength of the local
electric field. This way, a general view of the field-strength
distribution around the antenna is obtained.

However, the radiation mechanism of an antenna can be
analyzed only if the time-dependent behavior of the field-
strength distribution is known; i.e., if the displacement of
the field lines and their detaching from the antenna is ob-
served. For this purpose a differential equation, which de-
scribes the time-dependent movement of a field point, is de-
rived and solved for the first time.

A. Computation of Electromagnetic Fields

The geometrical model of the analyzed biconical antenna is
shown in Fig. 1. The arrangement is rotationally symmetrical
around the z-axis. The hatched areas are ideally conductive.
An ideal source and an ideal sink are concentrated in the origin
of a spherical coordinate system. The source excites a TEM-
mode whose amplitude is simply chosen to unity, and the sink
is a selective absorber used especially for this type of mode.
These assumptions simulate the behavior of an ideal antenna
feed line, which is prescribed for mathematical simplicity.

In the inner and the outer part of the antenna, lying on op-
posite sides of the spherical surface at r =/, the electromag-
netic fields are expanded in infinite eigenfunction series. The
expansion coefficients can be determined via an oppositely di-
rected orthogonal expansion. This mode-matching procedure,
together with the prescribed expansion direction, guarantees
the continuity of the transversal electric and magnetic field
strength in the aperture of the antenna at r =/.

The exciting TEM-mode has only two field components:
Ey and H ;. Thus, due to the rotational symmetry of the an-
tenna (8/0¢ = 0), only rotationally symmetrical TMy-modes
are excited. These modes are composed of three field com-
penents: E,, E,, and H .. In the inner antenna region all
TMp-modes are standing waves, since they are reflected at
the origin because of the modal selective sink.

B. The Differential Equation of Electric Field Lines

The tangent at an arbitrary point of an electric field line
denotes the direction of the electric field vector at this point.
This fact can be described mathematically using a line vector
element ds as follows:

E xds =0. (1)

We consider only the r — ¢ plane of a spherical coordinate
system (o = const.). Thus inserting the time-domain electric
field vector

E(t) = E,(De, + Ey(t)ey )

and

3)

into (1) and normalizing with the propagation constant X =
w /o€ yields the differential equation for electric field lines:

ds =dre, +rdde,

dkr

dv
This equation is not well suited for numerical evaluations,
since there is no one-to-one correspondence between the co-
ordinates r and ¢ along a curve. Hence (4) is transformed to
a parameter notation with the infinitesimal arc length ds as
a natural parameter {8]. In computing the directional deriva-
tives for the coordinates r and 1} along a curved field line, one
obtains a coupled system of two differential equations:

E.(r,v,1)
= —_— 4
krEA)(rs 19, t) ( )

dkr _E, )
dks /EE +E2),
do 1 E, ©

dks kr /E% +E3

Dividing (5) by (6) leads to the original equation, (4). The
differential equations (5) and (6) are associated with the fol-
lowing initial values:

I(sg) = Y. @)

After selecting a first point of the desired field line (r¢, o)
or after choosing the corresponding initial parameter sp, an
initial value problem of two ordinary differential equations is
obtained. The solution of the differential equation system (5)
and (6), and with this the equations of a field line in the r — 4
plane, is obtained in an integral representation:

r(so) = ro,

ks 7
E
kr(s) = kro + / r(s) dks', (8
ko JEF(s) + E5(s")
ks /
I(s) = Yo+ ! Evs) dks’. (9)

o KFS') B35 + E3(5)

The field components E, and E ) are assumed to be known.
Using a Runge-Kutta formula of fourth order [9] for sys-
tems of differential equations, a consecutive integration of the
coupled equations (8) and (9) yields discrete interpolation
points along a curved field line. A step size

As =i, — i ~\/100 (10)

between two neighboring interpolation points s;,; and s; has
proved to be advantageous. \ is the wavelength of the feeding
TEM-mode. The computed line points (r;, ;) are connected
to a continuous field line using a cubic-spline interpolation
algorithm.

There is no difference in the procedure for the construction
of magnetic field lines. In the considered case of a TEM-
mode-excited biconical antenna the magnetic field lines are
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concentric circles around the z-axis. Their presentation does
not seem to be very interesting and is therefore omitted.

C. Construction of a Field-Line Pattern

Using (8) and (9). it is possible to compute field lines for
arbitrary starting points (ro, ¥g). In the following a recurrence
relation between the starting points of different field lines is
derived. The condition that the same electric flux is always
carried between two neighboring field lines must be satisfied.
If for all field lines the center angle of the antenna aperture is
chosen as starting point g

) I+ V2
thy = - s
0 2

then only the radial distance between two field lines must be
considered at Jy. The electric flux ¥ in vacuum, penetrating

through an area A, can be described by the following relation:

(11

wzeo/?-d_A‘. (12)
A

If the differential area element is chosen corresponding to

dA = sinvordrdye,, (13)

and only the absolute value of E, is retained, then from (12)
following formula can be derived for all rotationally symmet-
rical TMg-modes:

2meo ki !
¥ = —— sin 190/ |E,|krdkr. (14)
k” Jir;

The choice of dA as in (13) gives rise to a neglect of the radial
electric flux component in the recurrence relation (14). This
flux component is produced by an electric field component E,
at the center angle )y of the aperture. However, this neglect
means no essential restriction, since the relation E,(r, ¥9) =0
holds for a TEM-mode-fed symmetrical biconical antenna. In
addition the nonsymmetrical antenna produces:

|E,(I‘, 190)|
_— 1. 15
IEI'(r’ 790)' < ( )

The absolute value in (14) assures that oppositely directed
fluxes cannot be compensated, if the integration is performed
over a zero value of the electric field-strength component
E,. Equation (14) defines, the recurrence relation between the
starting point 7§ of the vth field line and the starting point r§*!
of the (v + Dth field line. After having selected the starting
points of the first two field lines r§ and rJ the constant flux ¥
is then defined. The solution of (14) using a Newton iteration
leads to the desired value r4*'. Thus the starting points 73, 74,
r3,- - - of all other field lines are found. Hence the fixed-point

iteration can be written as

ov
—— =0. 16
dv (16)
A starting value of
kFytt =2kry —kry™! (17

forv =2, 3, 4, - - - has proved to give good convergence. The

integral in (14) must be solved numerically, even for an ana-
lytically given eigenfunction representation of the field com-
ponents, because of the absolute value of E,,. For accuracy
reasons, we preferred the Gauss quadrature technique (see
(10p).

Figs. 2(a)-2(c) demonstrate the dependence of the field-line
pattern of the biconical antenna on the center angle vy of the
aperture. For a constant aperture angle (v, — vy = 40°) and
the same TEM-excitation, g is chosen as 40°, 65° or 90°.
The representation is restricted to the r — ¢} plane and to the
moment ¢ = fy. The initial phase angle wtq is taken for zero.
The direction of the field lines has not been indicated. The
patterns are mainly rotated toward each other and appear quite
similar near the main lobe, but are significantly changed in
off-center directions.

In Figs. 2(a) and 2(b) the field distributions for two non-
symmetrical biconical antennas are pre-ented. It is noteworthy
that the dimensions of both antennas permit the existence of a
special kind of field line, which has already detached from the
upper cone, but is still guided by the lower cone. As shown
in Fig. 2(a), also inside the biconical antenna some field lines
reverse before having reached the opposite conical boundary.
These two remarkable phenomena cannot exist in the TEM-
mode-excited symmetrical biconical antenna (see Fig. 2(c)).

D. Time-Dependent Variations of a Field-Line Pattern
Figs. 2(a)-2(c) show the field lines of biconical antennas
at discrete moments ¢ = fo. In the following the evolution of
such field patterns will be investigated for different moments
t =ty +nr

with n=1,2,3,.--. (18)

7 is a suitable chosen time distance between two neighboring
snapshots. We assume that a single point of a field line, which
can be identified with an infinitesimal small energy package,
propagates with an instantaneous energy velocity ve(#) [11].
For this field point a differential equation can be derived,
which describes its time-dependent displacement. The energy
velocity is the derivative of the energy path ds with respect to
the time. In the r — 9 plane the following vector differential
equation holds:

_ ds _dre, +rdVey
VE = dt - dit s (19)
which can equivalently be expressed in scalar notation:
.. dkr
VHOEQUE - €r = dot’ (20)
S dd
VHOEQVE - €y ——‘kl'd—. (21)
wl

Replacing in both (20) and (21) the energy velocity vg by
the ratio of energy-flux density P and energy density w with
Zo = +/po/eo as the characteristic impedance of the free
space

E xH
%"(E2 +Z2H?)

P@)

w(t) @2)

ve(t) =
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Fig. 2. Electric field lines: field patterns of related biconical antennas at
t = top = O with equal aperture angles. The antennas are fed by a TEM-
mode. Geometrical dimensions are: //A = 1 and ¥, — o, = 40°. The
different center angles of the aperture are chosen as vy = 40°, 65°, 90°.

leads to the following differential equation system for rotation-
ally symmetrical TMo-modes, which is suited for determining
the energy path:

dkr ZyEH .
A ] r , 23
dwt ~ "E% + El +(ZoH ) @)
dy 2 ZoE . H .
A . <Lt S 24)
dwt kr Ey + E; +(ZoH )
With the initial values
r{to) =ro (25)
and
D(to) = o = ;”2 6)

the coupled equations for the time-dependent space motion of
a point of a field line can be written as follows:

wl / !
kr(t) = kro +2/ _ZENOHN)
wo V() + EZ() + ZoH (1)
@7
vwl 2 Z()E,(tl)H -(tl) ,
)ty = o — ; 5 = dwt’.
o= L, kr(t) B + EX0) + Z5HAWD
(28)

Equations (27) and (28) are solved for a given moment ¢ anal-
ogously to (8) and (9) using a Runge-Kutta formula of fourth
order. For the numerical evaluation of the integrals a time-
discrete step size At has proved to be advantageous:

At ~ T /300, (29)

where T represents the time period (I’ = 27 /w). The com-
puted field-line points are then used as starting points for the
complete field-line construction as shown in Section 1I-B.

Figs. 3(a)-3(d) demonstrate the field-pattern evolution for
a nonsymmetrical biconical antenna in the r — 1) plane at dif-
ferent moments ¢ = fo + n7 during a half-period 7' /2. The
time distance 7 between two snapshots is chosen as follows:

r=T/8. (30)

The computing time for a complete field-line pattern at a fixed
moment ¢ strongly depends on the aperture angle (v, — vy)
and on the spatial step size As. On an IBM 3090 computer a
CPU-time of about 50 s is consumed for an aperture angle of
order 60° and for a step size As =~ N/100. The longest field
lines in Figs. 3(a)-3(d) consist of about 1000 interpolation
points.

III. GENERALIZATION AND CONCLUDING REMARKS

The presented new algorithm for graphical representation
of electromagnetic fields around antennas requires only the
knowledge of the field strength at arbitrary space points and
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Field-pattern motion: field patterns of a nonsymmetrical biconical antenna at different moments ¢ = tq + n7 (to =T /16,

7 =T/8and n = 0, 1, 2, 3). The antenna is fed by a TEM-mode. Dimensions of the antenna are: I/N =1, 9 = 40° and

1}2 = 1000.

information about the geometrical shape and the location of
the considered structure. The described procedure takes into
account a physically meaningful field-line density and the
time-dependent evolution of the whole field-line pattern. The
general ideas, independent of the considered special arrange-
ment, can be summarized as follows:

e numerical solution of the field line differential equation
in parameter notation;

e flux computation and choice of field-line starting points;

e computation of the energy-path and the displacement of
total field lines.

Although the application of this formal algorithm may be quite
different for different types of antenna structures, the overall
technique is sufficiently general to apply to any antenna con-
figuration and even to waveguides.

Since the Hertzian dipole can be derived as a geometrical
limiting case of the biconical antenna, the field-line patterns

of this kind of antenna can also be generated using the exist-
ing software package. To obtain additional information about
the radiation mechanism it would be worthwhile to investi-
gate, after some minor manipulations with the existing soft-
ware package, the time-averaged energy flux of the biconical
antenna and of the Hertzian dipole. This quantity is of great
importance, since its graphical representation can give an in-
tuitive understanding of the directivity of an antenna.

The created Fortran computer program is well suited to
produce the snapshots for a film, which demonstrates the ra-
diation behavior of a biconical antenna. First experience in-
dicates that it would be advisable to subdivide a half-period
into 64 separate pictures (7 =7 /128).
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