Equivalent Current Method for Bistatic Scattering at a Circular Edge
K.W. Kark 1)

Abstract An efficient analysis is presented for cal-
culating the far zone fields scattered by a perfectly-
conducting, open-ended, semi-infinite circular wav-
eguide which is excited by an external electromag-
netic plane wave. The geometrical theory of diffrac-
tion (GTD) is employed to derive electric and mag-
netic equivalent line currents along the circular edge
of the aperture of the waveguide. The line current
distribution is approximately taken as an equivalent
for the circular edge, bounding the aperture of the
cylinder. The radiation behaviour of the calculated
line currents is found via an integral representation
of the field equations. For the bistatic diffraction

integrals new approximate solutions could be found.

Three-dimensional directional patterns show the
polarization dependent scattering characteristics via
a representation of the spatial distribution of the
radial energy-flux density.

1. Introduction

This paper considers the radar problem of bistatic
scattering of plane electromagnetic waves at a semi-
infinite circular cylinder. The diffraction at the cir-
cular rim of the aperture is treated in detail. Struc-
tures of circular shape which are used for reflector
antennas, jet air intakes and satellites are important
components for the analysis of complicated bodies
using the geometrical theory of diffraction (GTD).
Hitherto existing ray-optical investigations only deal
with the monostatic backscattering from a circular
aperture rim (Pathak et al [10]). In the following
analytical approximate solutions for the diffraction
integrals which appear in a bistatic scattering envi-
ronment are given for the first time. The integrals
are derived via the equivalent current method
(ECM). To that end the ray-optical approximation
of the geometrical theory of diffraction is used. Thus
a very compact representation of the scattered field
could be found which is much better suited for
numerical computations than the exact field sol-
ution derived by the Wiener-Hopf-method (Johnson
und Moffatt [3]).

2. The incident wave

The direction of incidence of the plane wave is
restricted to a meridional domain of 0° < 3, < 70°%;
accordingly only scattering directions are looked at
which are located in the same interval
0° < 9, < 70°. For this geometrical arrangement of
source and receiver it seams natural to neglect the
surface currents on the outer and inner cylindrical
surfaces since the dominant scattering contribution
arises from the diffration at the circular rim of the
aperture (Figure 1). The center point of the circular
aperture defines the origin of a spherical coordinate

system in which the incident plane wave and the
scattered field are described.
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Figure 1.  Bistatic scattering at a semi-infinite circular

cylinder. The source Q and the sink P are
located in far zone of the circular rim of the
aperture. The allowable angle domain of the
following approximate computations is
about 0° < 9, 9, < 70°.

To represent the incident wave at an arbitrary point
P(r) following ansatz is made which uses the wave

vector?) k, = — Kk, 7, for harmonic time dependence
(e/="):

E' = (A§31+A;$z)e_jk"' )
ﬁl = Yo E'X;’\l .

The wave r i8S Kk = o Juye, and
Zy = 1/Y, = /py/es is the characteristic impedance
of the free space. 44 and A4} are complex phasors;
they determine the polarization properties of the
incident plane wave. Using 7 = rr the propagation
term in Eq. (1) can be re-written:

e"lzc'? = glkr et ,
with

?i-;‘ = s5inY; sind cos (¢ — ¢;) + cosI; cos 3. (2)
In the following only the azimuthal angle of inci-
dence ¢, = 0° is considered; this means no
restriction since the scattering arrangement is rota-
tionally symmetrical around the z-axis. The plane
of incidence which is formed by the wave vector

k, = —ko7, and the z-axis is thus identical to the
x-z-plane of the spherical coordinate system
(Figure 1). In the special case of ¢, = 0° a hor-
izontally polarized (H) incident plane wave is
obtained for 4§ = 0; for 4!, = 0 vertical polarization
(V) occurs. The sense of circular polarization is
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called right handed (RHC) or left handed (LHC) if
the direction of rotation is clockwise or counter-
clockwise for an observer looking in the direction
of propagation.

3. Derivation of the diffraction integrals

Ray-optical methods cannot be used for field com-
putations near or on caustics which appear in con-
nection with circular edges. A caustic is a focal line;
every caustic point is crossed by an infinite set of
rays accordingly to the principles of the geometrical
theory of diffraction. Thus the total ray field leads
to a singularity and the method fails. For normal
incidence (9, = 0°) the whole z-axis of the circular
cylinder is a caustic. In general integral represent-
ations of the field equations can be applied to com-
pute the field in such regions. To that end equiv-
alent glectric and magnetic line currents (/, and [,)
are introduced which flow along the diffracting edge
(Knott und Senior [6]). These currents are taken as
an equivalent for the diffracting edge. Their radi-
ation behaviour in the free space, i.e. after having
removed the cylinder, is considered in the following.
Maxwell’s equations for harmonic time dependence
(/=) and homogeneous isotropic domains are dealt
with:

VxH = jogE +J 3)
VXE = —jopyl{ — M .

J and M denote the superposition of localized and
induced electric and magnetic current densities.
They represent the sources of the incident and the
scattered field:

J=.I‘+jl, M=M3+Ml.

The source current densities J, and M, may be
expressed via the line currents /, and /, which are
induced along the circular rim of the aperture of the
cylinder. Their representation in spherical coordi-
nates at a point F’ = ap’= a(Xcos ¢’ +j sin ¢")
on the circular edge is:

TE) = L) & &' = a) 69 = 5) &'
o 1 T A (4)
M) = In(@) - 6" —a) 88 = 35) 9" .

Dirac’s delta function is denoted by 6. Approximate
values for the line currents /, and 7, will be given in
section 3.2.

The total field is composed of the incident wave and
the scattered field:

E=E+E*

H=H+H .

The incident plane wave is given in Eq. (1). The
differential equation system (3) can be transformed
into an integral form (see e.g. Schroth and Stein

[13]); thus one obtains the solution for the scattered
field in the Fraunhofer far ficld region:

e ~Jjkory
4zr,

E'F) = jkoa ©

A -,
+ ;\:XQ" Im(‘P')] ejkO"'r do !

2x
J'[zo Fox(Fx@’) I(e) +
0

HE) = %P xE'G) - (©)

The current densities J/, and M, have already been
inserted from Eq. (4). The integration path and the
mutual location of the integration point and the -
field point P is shown in Figure 2. The standard far
zone approximations

koRs » 1,

are applied. R, ist the distance between the diffrac-
tion point on the rim and the considered field point

(Sikver [15]):

R.~r.—F..r' = r —asind, cos (o' = @) - (7
3 s 3 b 3 ]

rn>»r’'=a

(S @)
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The integration path. The diffraction point

at 7’ = ap’ is part of the integration path
along the circular rim.

Figure 2.

For a clearer subsequent derivation of the edge cur-
rents /, and [, some basic ideas regarding the dif-
fraction at a half-plane are presented first.

3.1 The law of edge diffraction

The curved circular edge of a semi-infinite wave-
guide can locally be modeled by a half-plane tangent
to the edge at the diffraction point. Using a ray-op-
tical approach (geometrical theory of diffraction -
GTD, see Koupoumnjian et al [97) the edge diffracted
field can be computed approximately. The relation
between the incident and diffracted ray is described
via an edge-diffraction coefficient which depends on
frequency, polarization, incidence and diffraction
angle.

The local edge angles of the incident (8, ;) and the
diffracted ray (B,, ¥,) (see Figure 3) are connected
via simple trigonometric relations with the global
directions of incidence and scattering (9, @,; 3,, #,)
(sec Figure | and Figure 2). The angles are
restricted to the range 0<f,, <= and
0< ¥,, < 2= The law of edge diffraction which is
based on the extended Fermat's principle (Keller
[5]) reads:

Bs = B -




The ray-fixed coordinate system. The angles
B... and ¥, for incident and diflracted ray
are defined relative to the tangent { and the
normal 21 of the edge of the half-plane. The
hatched areas denote the plane of incidence
and the plane of diflraction.

Each ray which hits the edge excites a cone of dif-
fracted rays. For normal incidence (8, =0° —
B, = =/2) the cone degenerates to a circular disc.
The diffracted field can only be computed in certain
directions of space lying on the Keller cone.

The GTD - edge diffraction coefficients for the
half-plane are defined as follows:

e/ g

= - x
. { (8)
x ¥
cos Vi~ ¥ cos Yy + ¥,
2 2

The — signs describes the electric case (D,) and the
+ sign the magnetic one (D,). The wavelength
Ao = 2n/k, is related to the wave number. For
B, = B, Eq. (8) gives the ordinary GTD edge dif-
fraction coefficients. A heuristic argumentation
allows the approximate use of the same expression
also for scattering directions which do not lie on the
cone of diffracted rays (8, # f,). The symmetry of
the square root term in Eq. (8) guarantees the reci-
procity when interchanging the incident with the
diffracted ray and has proved its applicability in
numerical comparisons (Knott and Senior [7]). For
later purposes the always real modified diffraction
cocfficients are defined as follows:

AN o
Jsin By sinf,

The GTD edge diffraction coefficients become sin-
gular at the zeros of the cosine functions in Eq. (8).
These singularities are exactly located on the shad-
ow and the reflection boundary of the incident wave
relative to the diffracting edge. While crossing these
boundaries the direct or the reflected ray suddenly
disappears. The location of the incident shadow
boundary - ISB and the reflection shadow boundary

Oom = Kga /™14

- RSB can be described via the local edge angles (see
Figure 3):

ISB _, RSB _
‘ﬁ." =7 + VII N s

"1!""!//1 .

(10)

The discussed singularities and their surrounding
transition regions are the reasons that only a global
angle domain of about 0° < 9,, < 70° can be
considered. The geometrical theory of diffraction
can be enlarged by higher order terms. Doing this
leads to new diffraction coefficients from which
fields can be derived which have no singular behav-
iour while crossing the shadow and the reflection
boundaries. This uniform geometrical theory of dif-
fraction - UTD (Kouyoumjian and Pathak [8]) pos-
sesses the same disadvantage, just as the GTD, that
the field representation becomes singular at caustics.
By the aid of an integral representation of the field
equations, approximations for the fields can be
obtained also in caustic regions using equivalent line
currents on the circular edge of the aperture.

3.2 Equivalent edge currents

To avoid the caustic problem of GTD and UTD the
equivalent current method - ECM (see e.g. Pathak
[12]) is used. To that end, an integral representation
of the field equations, just as has already been given
in the Egs. (5) and (6), is needed. The ECM can of
course determine the scattered field even outside
caustic regions; the computed values in those
regions agree asymptoticly with the field values
which can also be found there using the GTD.

The equivalent edge currents are determined from
the incident field via the GTD - edge diffraction
coefficients for the half-plane (see Eq. (8)). This is
possible since the edge is located far away from the
caustic region. The so computed line currents are
no physical currents; it is not possible to derive from
them the scattered field for all directions of space.
The heuristic extension of the region of applicability
for the GTD - edge diffraction coeficients to all
spatial directions even away from the cone of dif-
fracted rays (see Figure 3) allows an approximate
field computation in the whole interesting meri-
dional angle domain 0° < 9,9, < 70°. The com-
puted ECM fields show the same singularities at
shadow or reflection boundaries (ISB, RSB, see Eq.
(10)) just as those fields would do which were
derived by a GTD based algorithm.

The equivalent edge currents are derived from those
components of the incident field which are locally
tangential to the edge using the GTD - edge dif-
fraction coefficients for the half-plane (Pathak et al
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The incident field can be found in Eq. (1) and the
diffraction coeflicients are given in Eq. (8). It is
obvious that the equivalent edge currents cannot be
real physical currents, since their values depend on
the direction of observation (9,9, = B, ¥,)



Accordingly to the GTD - edge diffraction coeffi-
cients the current representation was heuristicly
extended to spatial directions away from the dif-
fractioi cone (B, # B).

The tangential fields at the circular ring r=ar
= a(xcos ¢’ + sin ¢’) which are needed for the
evaluation of Eq. (11) are given brlow:

E'-é‘:' = [ - A‘f, cos 9; sin (¢’ — @) +
s 2 (12)
+ 4 cos (o — @) | el P

1‘7’.6' = —?O[A; cos 3; sin (¢’ — @) +
(13
“+ A} cos (@' - ¢0] elloarer
Starting from the integral representations (5) and (6)
one finds the electric and magnetic field components

of the scattered field in 9,- and $, -direction using
the Eqs. (11) to (13):

Es(ry) = fir) [I."A; cos 9;cos 9, — I°A, cos 3, —

~ I%AL cos 9; = 144 14)
Hy(F ) = YoEs(r )
E)r)= ﬂ';)[ — T84, cos 9;cos 8, — IS Ag cos 3, ~
~ 1A cos 8 + 1AL ] (15)

Hy(r) = - YoEL(r,) .

The propagation term of the scattered field which
is considered as a plane wave in the far-zone is:

= 1 -k,
bA(A ToTs e .
All eight appearing diffraction integrals /"' ““ have
the general form:

2n

Ioa: 8, 01: 94 0) = J h(e) M5V dy , (16)
’ 0
with:
8o = (P + 7). = an
= sin 9, cos(p’ — @,) + sin Y;cos(p’ — @) ;
their subsequent computation is one main part of
this work. The diffraction functions A (¢’) may take

eight different forms. The indices e and m or s and
¢ are correponding with the indices of the diffraction

integrals in the Eqs. (14) and (15).

h:fm(q") = 63, m(¢') sin (¢’ — ¢i) sin (¢’ — (P:)

Rl m(@) = 8, m(®") cos (9" — @) sin (¢’ — @)
b, m(®@) = 8, m(@") sin (¢ — @) cos (¢’ — @)
Rim(@7) = 8¢ m(®") cos (@ — @) cos (@' — @y)

For practical reasons the diffraction functions are
subdivided as follows:

he") = ¢ mle’) T(e")

with the trigonometric products

n - Jsin(e" — @) sin (¢’ — @y)
Tle") = {cos (qo’-cp{z)}{cos (4""'(7;:) '

Because of the complicated dependence of the
modified diffraction coefficients 4, . on the variable
of integration ¢’ the eight diffraction integrals /
from Eq. (16) cannot be computed rigorously. The .
next chapter therefore shows how to construct
approximate solutions of these integrals which shall
be applicable in the whole interesting range of
aspect angles 0° < 9,, < 70°.

4. Approximate solution of the diffraction integrals

The "diffraction integrals (16) can be computed
numerically. But for a larger waveguide radius
(kg a> 1) this approach is very time consuming
because of the rapidly oscillating behaviour of the
integrand; it is much more economical to use an
analytical approximate solution which will be
developed in this chapter. It’s high accuracy has
geen proved by comparison with a numerical qua-
ratur.

4.] The method of stationary phase

To “prepare the following umform integral evalu-
ations this section gives some introductions to the
method of stationary phase (see e.g. James [2]) for
the asymptotic computation of integrals of the type:

pr 3

I = J‘h(?')ejk“ag(w)dzp' , (18)

0

which frequently appear in diffraction theory. If the
condition %, @ 1 is met, while g(¢") is of order of
unity, then the exponential term in the integrand is
a rapidly oscillating function of ¢’ with the excep-
tion of certain regions around some so-called sta-
tionary points of first order at ¢,’, which obey the
condition:

gleg) = 0 with g%pg) # 0 .

The actual diffraction problem with the function
2(@") from Eq. (17) yields the stationary points:

sin 3; sin ¢; + sin 3, sin o, 19
sin 9; cos ¢; + sin 9, cos o, 19

¢g’ = pr + arclan

With the supplementary condition g"(p,") # 0
there are always two stationary points on the circa-
lar aperture rim which lie diametrically on opposite
sides of the circle. They define local scattering cen-
tres of the circular edge which must be taken into
account for a GTD - ray construction as edge dif-
fraction points of singly diffracted rays.

The value of the integral / is dominated by regions
around stationary points, if 4(p’) is only weakly
changing in the neighbourhood of ¢,’, since the
contributions to the integral which result from more
distant integration points cancel each other. One
finally gets as the aymptotic integral approximation



accordingly to the method of stationary phase
(Erdélyi [1]):

2n N el (nase) £ F)
In [—2E hpyyel (hese )
koalg"(9o")|

The + sign is valid for g7(p,") >. 0 and the - s:gn
for g"(@y) < 0.

4.2 Uniform_integral evaluation
In the foﬂowmg the approximate solution of the
eight occuring diffraction integrals with the type

2®,

Tom'™* = fé., (@) T(e) e/ 0?5 dor  (20)
0

will be discussed. The idea for an asymptotic repre-
sentation of the diffraction integrals arises from
Pathak et al [10] who considered the monostatic
special case of radar backscattering from the semi-
infinite circular cylinder. This paper gives a gener-
alization of that approach to bistatic scattering. As
was shown by Kark [4], an approximate solution
of the diffraction integrals can be found which is
applicable in the whole interesting angle domain of
0°< 9,<70° and which also in the caustic
region yields well defined results:

2z

L'm' " % 84 m(90") J T(p") e/ %8®) do' . (21)
0.

The diffraction coefficients 6, ,(@,’) at the stationary
point (19) are obtained from the representation (9).

For the following rigorous computation of the
remaining integral in Eq. (21) the phase function
g(¢’) from Eq. (17) is displayed in this equivalent
form:

&) = 4 sin (o' + @)

with

= ./ sin9, + sin?9, + 2 sin 9, sin 9, cos xo
sin 9; cos ; + sin I, cos @, (22)
sin 9; sin @, + sin 9, sin @,

0= ¢~ @5 -

So the diffraction integral (21) can be re-written:

Lei s, ¢ sin( )
e. m Se, m(‘PO')J'{cos(Z - (:,i)

" {sm(w - @)

cos(o’ — o)

tan® =

o Jkoad sin(p’ + @) de’ .

After an elementary transformation of the trigono-
metric products all eight diffraction integrals can be
reduced to three remaining types /y, I, and /.

Iim % 8¢, m(@0) 5 (Jo 0820 = I.)
Ioim % 8¢, m(90) 5 b (—lo sinxo + I;)
Iim % &, m(®o’) 5 (’o sin xo + ;)
Iem = 8e,m(®0") 5 L (I cosxo + 1) .

With the abreviations

a = kyad and = ¢'+¢—‘Z§'

the remaining basic integrals are:

3z
o+ 2

,0 = I ejd COS?dT
—15 sinxz
—13 cosxy

I, = =I5 cos 13
I, = 1{ sin x3
with

X2 = 20+ o+ o

and
3
o+ -
1] — 2
55 = iom:,z:} LK LS
The integrals I,/; and [i are denoted as

Sommerfeld’s integrals; they can be solved rigor-
ously using the ordinary Bessel functions J, and J,
(Weyrich [16]):

Iy = 27 Jy(o)
= —2rJya)
L= 0.

The wanted approximations for the diffraction inte-
grals can now be given usmg a clear matrix notation:

33
Ie. m

A cos Xo — COSs X2
Ie/m n| = sinxo = sinxa || Jo(x)
e = 76, m(®o’) sinxg = sinx2|| Jo(e) @3
ce cosXg  cos X3
’., m
withzo =@, — 9,and 12 = 20 + ¢, + ¢, , ¥ and

A from Eq. (22) and « = Kk, a 4 . Together with the
Eqs. (14) and (15) and the general values of the
modified diffraction coefficients 3, .(@,) at the sta-
tionary point, one obtains a closed approximative
represcntatlon of the scattered far-field. Compar-
isons of the approximate solution with a numerical
Gauss quadratur of the diffraction integrals show a

od agreement. In the monostatic special case
Pathak et al [lO% made comparisons with the exact
Wiener Hopf solution for the diffraction at a semi-
infinite circular cylinder and they found also a good
agreement with their approximate solution in the
whole range of aspect angles.



8. Far-zone fields

Using the equivalent current method (ECM) a far-
zone representation of the field which is bistaticly
scattered at the circular edge was given in the Eqgs.
(14) and (15). Then the eight different diffraction
integrals were solved approximately (see Eq. (23)).
In the following the scattered field components will
be transformed to a formal scattering matrix nota-
tion.

5.1 Scattering matrix_formulation

The Egs. (14) and (13) which show the far-zone
components of the scattered field can be re-arranged
in matrix notation:

E§ ES)
= [§]
(E:,) LS (E;

H

e"jko’,
ko re

; " (24)
(#)- ()
with the transformation matrix
v1=(9"s) - 25)

The components of the incident wave are taken at
the origin (r = 0) and they are, according to Eq.
(1), identical to the complex phasors 4§ and Aj:

Ey = Ey|r=6 = 45
= = 4!
'E; - Efpl"‘o Ay

[S] is the far-zone scattering matrix with the fol-
lowing form: :

[ Sss Sse
€s1 = ( Soe S

and the separate scattering coefficients are:

(26)

e2))

Sge = I cos9cosd; — Iy

Spp = —l¢ cosd; — I;f cos &
Sps = =15 cos 9 = I cos 9
Spp = Ig = Imcos9;cosd; .

Using following decomposition of the approximate
solutions of the diffraction integrals (see Eq. (23))

l::'m = 63, m(¢’0') I~
be, m(®0)) I
S, m(Po) [ @
I:,cm = 6c,m(¢0') r ’
the scattering matrix [S] for the edge of the aper-

ture can be split up into two separate scattering
matrices:

(5] = 600" [S,] + (o) [Sp]
with

-.e'
o
i

(28)

(29)

I¥ cos 9;co8 9, — I cos 9
[Se] ( - ISC cos \9! [“ ¥

and

T ~Icos 9,
(s,] = (—I“cosS, ~1¥cos 9;c089; ]

With the decomposition (29) the scattering contrib-
ution excited by the electric equivalent edge current
I, can be investigated separately from the contrib-
ution excited by the magnetic equivalent edge cur-
rent /. There exists a remarkable relation between
both scattering matrices:

(s,] = [v1ls1lv] )
using the transformation matrix [V'] from Eq. (25).

5.2 Polarization effects

Since the cylindncal scatterer is rotationally sym-
metrical one only needs to consider the azimuthal
angle of incidence @, = 0° (see Figure 1) without
loss of generality. Thus a linear (V-H) polarization
basis can be build up very simply:

EV=E‘9, EH=E¢.

So the scattering matrix for linear polarization (ver-
tical or horizontal) is identical to the scattering
matrix [S] from Eq. (24). A circular polarization
basis (LHC-RHC) can be obtained using the trans-
formation:

(Frc) = toa ()

with the unitary matrix

- 1 (1-i

(vl 7 ( i ]) .

The imaginary unit is j = J—1. The unitary
matrix LU] fulfills the condition [U]" = (LUT™")’,
i.e. the complex conjugate matrix is identical to the

transposed of the inverse matrix. Thus for @, = 0°
one can write:

Eg -1 { ELnc
= LU .
( Ew) [ ] ( ERHC)
Introducing this transformation (30) into the scat-

tering equations (24) leads to the relation between
incident and scattered circularly polarized waves:

EZHC> —f ELic \ e~ Ro"
= [Ullsitu]

(E;HC Eﬁzyc ko rs
Just as in Eq. (26) the incident field is taken at the

origin » = 0. Using the transformation (30) one
finds:

(30)

.(31)

Epnc = "‘\/'15— (Af; “J'A;)
Erpc = —j—;— (AQ +j,4;,) .

Starting from the scattering matrix [S] in Eq. (27)

which holds for linear polarization vectors, the new

larization matrix [Sy] for a circular polarization
asis is obtained after two matrix multiplications:



(sy] = [UICsILu1 ™" = (G g8 ). o

RR

The particular scattering coefficients are:

«+_ 1 .
Sie = Srr = 5 LSss + Spp + 7 (Spp — S¢8)(13)
Sir = Sar’ = 5 [So0 = Spp = (Sap + Sp0)].-
6. Scattering diagrams

To demonstrate the scattering behaviour at the rim
of the aperture of a semi-infinite circular cylinder the
spatial distribution of the radial energy-flux density
of the scattered field is considered:

P, = -;—- Re{E’x(ﬁ‘)'}-?,

Because of the condition H* = Y, 7, x E* the far-
zone formula simply reads:

P = 2 (112 + IE1?)

Using the scattering equations (24) the radial ener-
gy-flux density in the far-zone can be determined:

P, = —);9‘{ |45 509 + 4 Sop|” +
+ I'Afl»‘ S¢8 + A:v S¢¢I2}

1
(ko r)?

The normalized radiation characteristic C which is
commonly displayed in a logarithmic form is then
derived:

P ;(‘91' S5 P @5)
P; max

P} max is 2 normalization factor which specifies the
energy-flux density in the main radiation direction.
Symmetry considerations for the scattering at a cir-
cular cylinder indicate that the radiation character-
istic does not depend on the azimuthal angle
@; = @, in the monostatic case while in the bistatic
case only the difference (p; — @,) between both
angles influences the scattering diagram:

C™ = C(9y)
Cb = 8,9 01— @5) -

A vertically polarized incident wave implies 4, = 0
for ¢, = 0° and one obtains' the non-normalized
scattering characteristic C,, :

Cy = ]Ssslz"'lsqas'z .

C(Sy 35 o1 P5) =

(34

(35)

In an analogous manner is A4 = 0 for an incident
horizontally polarized wave and one gets:

Cr = | Spo "+ S5 ]" - (36)

Bistatic radiation characteristic. C;, , Cy and C. (see the Eqs. (35) to (37)) for an incident vertically,
horizontally or circularly polarized plane wave. The diameter 2a of the circular cylinder is three wave-
lengths (kya = 3 z). Two different siluations are displayed: a) axial incidence (3, = 0°) and b) oblique
incidence (9, = 15°).

Figure 4.



An incident plane wave with circular polarization
yields the non-normalized radiation characteristic
using Eq. (31):

: . 2 2
Cc = Cruc = Cruc = 2(ISel” + 151217) =
(37N

2 2 2

= Cy + CH b ISss'z + Isws
For a normalized waveguide radius %a = 3=
(2a = 3 1) the following three-dimensional polar
plots show the spatial distribution of the radial
energy-flux density of the scattered field in the bis-
tatic scattering problem. A logarithmic represen-
tation with a dynamic range of -40 dB to 0 dB was
used. The direction of incidence of the plane wave
18 indicated by ¢, = 0°and 3, = 0° or 3, = 15°. The
scattering diagram is only displayed in the range
0° £ 9,, < 70°. For an incident vertically, hor-
izontally or circularly polarized plane wave the cor-
responding radiation characteristic C,, C, and C, is
shown in Figure 4.

7. Concluding remarks

This paper considered the radar problem of bistatic
scattering of plane electromagnetic waves at a semi-
infinite circular cylinder. The diffraction at the cir-
cular rim of the aperture was investigated in detail.
To avoid the singularity problem at caustics occur-
ing in ray-optical high frequency solutions the ECM
was applied which is based on the geometrical the-
ory of diffraction. The diffraction integrals could be
solved approximately to determine the scattered
field in the far-zone.

The field of application of the ECM computations
is restricted to the domain 0° < 3,, < 70°. An
extension to all ‘angles of space including the inci-
dent and the reflection shadow boundary is possible

using a combination of ECM with UTD; the latter

method yields a non-singular field representation in
off-caustic regions.

Of special interest is a future investigation of the
scattered field in the direct near-zone of the aperture
of the waveguide. To improve the precision of the
performed approximate computations higher oder
terms can be introduced which arise from multiply
diffracted rays. Furthermore other waveguide exci-
tations than just a plane wave can be considered. In
Schroth and Kark [14] the excitation by an electric
dipole located on the symmetry axis of the circular
cylinder can be found. .
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