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Abstract

The stationary electromagnetic boundary value problem with harmonic time dependence e/«t is
treated for loss-free, slightly inhomogeneous hollow waveguides with circular cross section.
Starting from the canonical problem of the homogeneous circular cylinder the influence of smali
changes of the cross sectional radius and of a slightly bent longitudinal axis on the stationary field
problem is investigated. Because the shape of the hollow waveguide changes only siowly,
approximate analytical solutions of the field equations can be found applying an improved adia-
batic mode theory and a perturbational approach of Rayleigh and Schrédinger.

1. Introduction

Hollow waveguides with circular cross section are important microwave devices for radar-, com-
munication- and satellite-applications. Besides the common circular cylinder some other wave-
guide designs are used (see Figure 3).

e circular cylinder holiow waveguide
e tapered hollow waveguide
e toroidal holiow waveguide
® toroidal tapered hollow waveguide

Hollow waveguide tapers are applied as matching devices connecting two waveguides of different
diameter. An unsteady discontinuous metallic boundary would effect severe reflection- and con-
version losses for the incident mode, which carries the information signal. Therefore usual taper
profiles are constructed as smooth and weakly inhomogeneous transitions. Toroidal hollow wave-
guides with curved longitudinal axis have several applications, e.g. as antenna feed lines. With
uniform plane curvature closed torus structures are used as cavily resonators in plasma physics
or as toroidal antennas (Lileg et al [1]). Combining the tapered transition with the toroidal structure
leads to a toroidal taper with weakly changing cross sectional radius and uniformly bent longi-
tudinal axis. The exact solution of Maxwell’s equations in such inhomogeneous non-canonical
waveguides cannot be given with correct boundary conditions

nxE =0 n.-H =0 . 1
Deforming the boundaries of the waveguide gives rise to a disturbance of wave propagation. For
perturbations, which are not too large, approximale analytical solutions of Maxwell’s equations can
be found. Starting from the well known eigenmode solulions of the canonical homogeneous
straight circular cylinder waveguide of constant cross section all modal coupling elfects are con-
sidered via suitable correction terms to the unperturbed solution.

2. The tapered hollow waveguide

A simple approach to field calculations in the tapered waveguide is found using adiabatic appro-
ximation methods. Adiabatic modes are defined as local eigenmodes of the inhomogeneous
structure and adapt continuously to the changing environment (Arnold and Felsen [2]). Therefore
the mutual coupling between adiabatic modes is small. The metallic boundary of the investigated
tapered hollow waveguide must be smooth and only weakly changing. The usual adiabatic modes
are modified in this paper to get a more precise description of wave propagation. Thus a better
satisfaction of the Helmholtz equation and the boundary conditions can be obtained (Kark [3]).

2.1 Modified adiabatic modes - MAM ,
The eigenfunction solution for the vector potential in the homogeneous circular cylinder

A(O) = C Jm(Kp) e:t]”l(pe:l:]kzz (2)
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built up by Bessel’s and trigonometric or exponential functions must be modified with appropriate
correction terms_taking the perturbed geometry into account. A partial separation ansatz for the

vector potential A = A 5, in cylindrical coordinates

A = fi(p,2) Hip) f2) (3)
is introduced into the Heimholtz equation with A as Laplacian operator
(A+x)a=0 . (4)
This leads to the azimuthal solution
_ fcosme
fle) = { sinm g } . )

and delivers an involved partial differential equation for the quasi-radial eigenfunction f,(p, z)
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The propagation term £(z), which incorporates distributed modal reflections, must satisfy
d? 2
—d—-2— + kz(Z) fa(Z) =0 . (7)
z

Following separation equation holds
K2 = K¥2)+ k¥2) . (8)

The transversal eigenvalue K and the propagation constant k, are weakly depending functions of
the longitudinal coordinate z (see eq. (13)). Eq. (7) can be solved approximately using standard
WKBJ methods (Felsen and Marcuvitz [4]). The fallure of the conventional adiabatic mode theory
at cutoff transitions can be removed using the uniform Airy function representation of Langer [5].
An approximate solution of eq. (6) is found applying a Picard iterative scheme with starting value

59 = unK@)p) . (9)

The first iteration gives f{", which already includes all correction terms of first order 0(a’) with
a’ = da/dz (see eq. (13)). Q and P are suitable abbreviations.

D = exp [o gx P]Jm(KP) (10)

: K~ dz
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Pp.2) = m—LEL (Z(Z'(p)p)) (12)

The transversal eigenvalue K(z) is related via the cross sectiona! radius a(z) to the n* zero of
Bessel’s function J,, (or its derivative J,,’) of order m

_ Y Jmn for TH — modes
K(z)a(2) = { Jmn’  for TE — modes 13)
which results from the boundary conditions
A(o) = Olp,a for TH — modes (14)
©)
ﬁg;- =0l _, for TE - modes . (15)




Combining a TH- with a TE-mode leads to a hybrid coupled mode pair, which enables a better
satisfaction of the boundary conditions eq. (1). The method of modified adiabatic modes was
checked by Kark [6] considering the case of a conical linearly tapered waveguide transition. The
eigenfunctions of a conical horn can exactly be given using spherical harmonics. A comparison of
the conventional adiabatic mode solution (AM) using the simple radial eigenfunction @ with the
improved expression f{" of the modified adiabatic mode theory (MAM) indicates a 50 % reduction
of the deviation from the exact spherical wave solution. Thus MAM-theory delivers a stronger tool
than the older AM-theory for analyzing inhomogeneous waveguide transitions.

3. The toroidal hollow waveguide

Besides the tapered waveguide a smoothly and uniformly bent toroidal hollow waveguide is
investigated. It results from a homogeneous circular cylinder waveguide, which axis is not straight
but weakly curved. This symmetry deformation is considered as a perturbation of the homogene-
ous arrangement. With the help ol Rayleigh-Schrddinger perturbation theory (Schrédinger [7])
suitable correction terms to the unperturbed field solutions are computed. Toroidal structures
always lead to non-separable differential equations with exception of the Laplacian equation for the
static case. This is the most important reason for the appearing difficulties. Thus for an analytical
solution only approximation methods can be used.

The perturbation formalism of Rayleigh and Schrédinger is applied to toroidal holiow waveguides
by Kark [8]. From Maxwell’s equations a pair of coupled differential equations for the longitudinal
field components is derived, which can be decoupled by the help of a bicomplex transformation
(see eq. (16)). Thus an essential simplification can be achieved. In contrast to the toroidal resonator
there exist no toroidally uniform modes with three field components in the toroidal waveguide.
There are only hybrid fields with six components respectively. Using perturbation theory of first
order all eigenfunctions and eigenvalues (i.e. the propagation constants) of the hybrid quasi-E- and
quasi-H-modes can be found (Kark [9]). The infinite perturbation series can be summed in closed
form using the residue theorem. In this paper some instructive plots of the transversal field lines
and the spatial distribution of the energy flux density are given in comparison with the modal
behaviour in the straight circular cylinder (see Figures 1 and 2).

3.1 The perturbed Helmholtz equation
Maxwell’s equations in local toroidal coordinates (¢, ¢, a) (see Figure 3 with ¢ = p/a ) may be
reduced in the case of uniform plane curvature to a coupled set of partial differential equations for

the longitudinal field components E, and H, . Using a bicomplex transformation (i2 = —1)
F=h(Ea+i\/:E——Ha) | (16)
h.@) = 1=6¢ cosg (17
with the metric coefficient h and the inverse aspect ratio §
5 = _g_ , (18)

where a is the minor and R the major radius of the toroidal waveguide, a perturbed Helmholtz
equation with suitable boundary conditions is obtained (Kark [10]).

(Ay+A)F = 6LF (19)
Edg=y = 0 %{=1 =0 (20)
A, is the transversal Laplacian operator and L = L, - i L, an involved perturbation operator with



h(1-%) 3 ¢ Jo
using the dimensionless quantity y, depending via h on the transversal coordinates ¢ and ¢.
B
y = = (24)
wue h&, @)
A= a}2ys a’ (1 - yz) (25)

The parameter 4 is related via y to the so far unknown propagation constant 8, which serves as
an eigenvalue of eq. (18). The i-complex plane, Introduced in eq. (16), must strictly be separated
from the j-complex plane, which is commonly applied for a more elegant description of the time
dependence ( cos wt — e/+!) using complex phasors.

3.2 Perturbation theory

The basic idea to solve the non-separable Helmholtz equation (19) is to understand the curvature
as a disturbance of the hollow waveguide with straight axis. The eigenvalues and eigenfunctions
in the torus must continuously result from the solutions of the unperturbed differential equation
(6 = 0) while increasing the disturbance (8 > 0) . Thus the perturbed eigenfunctions can be
represented in a power series expansion refering to the inverse aspect ratio § = a/R. The expan-
sion coeflicients are linear combinations of the unperturbed eigenfunctions of the straight circular
cylinder. Only toroidal waveguides with weak curvature (0 < 8 < 1) are considered in this paper.
So the wanted expansions may be truncated after the linear term & and a perturbation ansatz of
first order for the bicomplex field function F, and the propagation constant g, is made

F, = FO + s F : » (26)
By, = BP + 58" (27)

where all modal double indices (m, n) are combined to one (v). The perturbation term is expanded
in unperturbed eigenfunctions with so far unknown expansion coefficients Cou

FY = Y6, FY . (28)
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Inserting all this in eq. (19), while neglecting all terms of second order O(5?), infinite perturbation
series are derived, which can be represented in closed form using the residue theorem. For the
resulting perturbed expressions see Kark [6].

3.3 Field shift
For a better physical understanding of wave propagation phenomena in toroidal waveguides some

plots of the obtained field intensities compared with the field of the straight circular cylinder are
finally given. The magnetic field lines in a transversal cross section are shown in Figure 1 for the
TH,, -mode, while the transversal distribution of the longitudinal component of the Poynting vector

P, = -;-Re{Exﬁ'}.é‘a (29)

is displayed in Figure 2. Darker shade indicates higher flux. Both diagrams show a considerable
shift of field lines and energy flux away from the center of curvature (located at the right hand side)
towards the outer boundary of the waveguide as the curvature increases.

4, The toroidal taper

As generalization a combined structure is finally treated, which incorporates both distortions of
circular cylindrical symmetry. The toroidal taper has a uniformly and weakly bent longitudinal axis
and a slowly increasing or decreasing circular cross section. Such an inhomogeneous hollow
waveguide has not yet been treated with analytical eigenfunction methods. After having investi-
gated both symmetry distortions separately a linear superposition of the field solutions for the
tapered and the toroidal waveguide leads to an approximate description of modal behaviour in the
new type of waveguide (Kark [6]). For first order computations the correction terms coming from
changing diameter O(a’) and those excited by the curvature O(5) may be computed separately and



may finally be added without a hybrid coupling term, which is in deed of second order
O(a’?, a", #?, a’5) and will be neglected, provided that the geometrical perturbation stays small.

5. Conclusion

Some types of weakly inhomogeneous hollow waveguldes have been investigated using analytical
quasi-eigenfunction methods. As generalization of the present theory some other deformations of
the cylindrical symmetry could be taken into account. One could consider non-uniform curvature,
waving bends or torsion of the longitudinal axis. Also an investigation of boundaries with losses
or of a plasma-filled inhomogeneous waveguide would be of special interest.
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Figure 1.  Magnetic field lines for the TH44-mode in the straight circular cylinder (6 = 0) and its
perturbed behaviour in the toroidal waveguide (6 = 0.042).
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Figure 2. Energy flux density Transversal distribution of the longitudinal Poynting vector (see eq.
‘ (29)) for the THq4-mode in the straj}ght circular cylinder (& = 0) and its perturbed
behaviour in the 1oroidal waveguide (0 = 0.042).
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Figure 3. Hollow waveguides with circular cross section Circular cylinder, tapered waveguide,
toroidal waveguide and tapered toroidal waveguide.




