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INTRODUCTION

The propagation of electromagnetic waves in

a loss free inhomogencous hollow waveguide
with circular cross section and uniform plane
curvature of the longitudinal axis is
considered. The exact solution of Maxwell's
equations in toruslike waveguides cannot be
given with the correct boundary conditions.
In a torus with small curvature the field
equations can however be solved by means of
an analytical approximation method. Using the
Rayleigh-Schrédinger perturbation theory,
eigenvalues and eigenfunctions containing
first order correction terms arc derived for
the full spectrum of all modes, including

the degenerate ones. The curvature of

the axis of the waveguide is considered as

a disturbance of the straight circular
cylinder, and the perturbed torus-field is
cxpanded in eigenfunctions of the unperturbed
problem. Complicated series expansions are
obtained, which can however be represented

in closed form by means of the residue
theorem. The field distortion increases with
decreasing radius of curvature. This behaviour
is proved by graphical representations of the
field distribution.

THE WAVE EQUATION

The following procedure allows computing of
wave propagation effects in loss free hollow
waveguides with local circular cross section
and uniform: curvature. The so-called local or
quasi toroidal coordinate system is conform
to the metallic boundaries and reduces in the
case of infinitesimal curvature to the common
circular cylinder coordinate system. Thus the
straight circular cylinder is obtained as a
limitting case of the curved structure. Figure
1 gives the relationship of the dimensionless
local toroidal coordinates (£, @, o) with
the rectangular coordinates (x, y, z). Using
the transformation p = af and s = Ra with p

as quasiradial length and s as longitudinal
coordbinate moanueed olanyg the curved axis, one
ohtiines
x=Rhcosa (N
y=Rhsina (2)
zZ=a E sin [’ (3)

with the metric coefficient h = 1-8Ecose and
the inverse aspect ratio 8 = a/R, where a is
the minor and R the major radius of the torus,
respectively; ¢ is the poloidal and o the
toroidal angle. The interior of the torus is
described by values of O £ £ £ 1. Applying
this coordinate system to Maxwell's equations
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for stationary fields in homogeneous,
isotropic and source free media, where all
field components get the exponential
dependence
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we derive, by elimination of the transverse

fields E_, E , H_ and H_ according to Cap and
Deutsch ?1),¢a s@alar i homogeneous Helmholtz
equation for the longitudinal components '

(A+N)F=38LF (7)

using a bicomplex field intensity F suggested
by Silberstein (2) with E = hEs and H = hHs

F=n(E+iN%H) . (8)

which can easily be decomposed in its physi-
cally meaningful constituents E_ and H_.

A is the transversal Laplacian 8perato§ and
L=1L; - ilL, an involved perturbation operator
of first or&er with
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using the dimensionless quantity Y, depending
on the transversal coordinates & and ¢

B
Y = —— .
wVpe h(E, ¢) (12}
The pavameter
A= wzye 02 (1 - 'yz) (13)

is related via y to the so far unknown
propagation constant B8, which serves as an
cigenvalue of equation (7), so proposed by
Lewin at al (3). The i-complex plane, intro-
duced in eq. (8), must strictly be separated
from the j-complex plane, which is commonly
used for a more elegant des&a%ption of the
time dependence (cos wt + e )} using complex
phasors. Since the perturbation operator L

is i-complex, the longitudinal field components
E_ and H_ are coupled. Thus in a toroidal
waveguidg there are no TE- or TM ecigenmodes,
in the strict sense, as in the straight circu-
lar cylinder. All modes are hybrid and get 6
field components, resulting from the non-
separability of the Helmholtz equation (7) in
toroidal coordinates.



PERTURBATIONAL APPROACII

The basic idea to solve our inhomogenecus wave
cquation (7) is to understand the curvaturc as
a disturbance of the hollow waveguide with
straight axis. The eigenvalues and eigen-
functions in the torus must continuously
result from the solutions of the homogeneous
differential equation (8 = 0) while increasing
the disturbance (8 > 0). Thus the perturbed
eigenfunctions can be represented in a power
series expansion refering to the inverse aspect
ratio 6§ = a/R. The expansion coefficients

are linear combinations of the unperturbed
cigenmodes of the straight circular cylinder.
Only tori with weak curvature (0 s 6§ << 1) are
considered in this paper. So the wanted
expansions may be truncated after the linear
term 6. An excellent description of the here
used Rayleigh-Schrédinger perturbation theory
of fist order is given by Schrédinger him-
sclf (4).

The homogencous solutions

In the straight circular cylinder our wave

equation (7) is reduced to

(A + 2\ F®=po (14)

because of vanishing 6 = 0. This eigenvalue
problem has a simple solution. The well known
TE - and TM__- eigenmodes with § field
comBonents a8 obtained, which build a
complete orthogonal set.

Perturbation theory of first order

With weak perturbation (§ << 1) the nature of
the field distribution of all non-degenerate
eigenmodes is changed only very slightly.
There substantially exist furthermore TM- and
TE- modes with only weak excitation of the so
far missing second longitudinal component.
Thus hybrid modes with 6 field components are
derived, which can be classified as quasi-E-
(EH-) and quasi-H- (HE-) modes, according to
Brambilla and Finzi (5). For the solution of
eq. (7) a linear perturbation ansatz of first
order for the bicomplex field function and
the propagation constant is made

F, = F9 + s FD (15)

B, =8 +s8" (16)

where we combine all double indices (mn) to one
(v). The perturbation term is expanded in
unperturbed cigenfunctions with so far

unknown expansion coefficients

1 0
F = } 6, O,
m (17

according to Lileg et al (6), who investigated
the closed toroidal resonator. Inserting all
this in eq. (7), while neglecting all terms of
sccond order in &, we derive infinite pertur-
bation series, which can be represented in
closcd form using the residuc theorem. The
resulting perturbed expressions cannot
oaplicbtdy ho alown in thin short summary. Tior
more information soe vafovencoe (7). But wo
remark, that the propagation constants of all
non-degencrate circular cylinder cigenmodes are
not altercd to the first order in the toroidal
waveguide

gV =0 . (18)

The curvature of the axis indeed modifies the

field configuration, but every mode is
propagating with the same phase and group
velocity as in the straight unperturbed hollow
waveguide.

The degenerate case. For degenerate unperturbed
eigenmodes of the circular cylinder, i.e.
TE,_~- and TM, - modes, the situation is
di??erent. Tﬂg field distortion is no longer
as weak as in the non-degencrate casc. The
TM,_~-mode with an antisymmetrical orientation
rei&tive to the plane of curvature (= - sing)
strongly couples to the TE, ~-mode. Thus
antisymmetrical TM, - modegnand TEq,- modes of
the straight circuiﬁr cylinder are o quasi-
stable torus-modes. They change their propaga-
tion constant by an amount

B = g SNEE (19)
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which has alrecady heon pointed out by Jouguet
(8), with j as the n-th zero of Bessel's

. function J,." 'Thus the degencracy is removed

in first order. In addition one finds an
oscillation of energy between the perturbed
TM1n-mode and the perturbed TEOn-mode

F, = [ Fg, sin(86%"s) +

. (20)
FHOacos(Gﬁf,l)s) ] o) (wtx 87s)

At certain bending angles o the energy is
concentrated in the perturbed TM, -mode, which
has 6 field components and otherwYse in the
perturbed TE, -mode, which has no longitudinal
electrical cgﬁponent. For general angles a we
get mixed states F -

THE TORUS-FIELD - RESULTS AND DISCUSSION

For a better physical understanding of wave
propagation phenomena in toroidal waveguides
we give some plots of the obtained field
intensities compared with the field of the
straight circular cylinder. For instance the
most important hybrid mode pair F, is investi-
gated, see eq. (20), with which tﬂe unwelcome
mode conversion H -~ E1 in circular hollow
waveguide transmiggion 11$es can be described.

Field concentration and energy shift

In cross sections, where one of the two
oscillating modes vanishes (see eq. (20)),
Figures 2 and 3 show the radial electrical or
magnetical field intensity of the remaining
mode in question. The plots are taken at a
waveguide radius of £ = 0.8 as a function of
the poloidal angle ¢. The dashed lines give
the behaviour for § = 0; the solid ones for

§ = 0.03 and 8§ = 0.06. We notice a field shift
towards ¢ = T or a concentration ncar ¢ = T,
respectively, similar to the results of Marcuse
(9) obtained for curved optical fibres. In
addition a plot of the cnergy flux density,
i.c. the longitudinal component of the
Paynting veclor

P relExn'} - &, (21

along a line in the plane of curvature (¢ = 7
or 0, respectively), taken for s = O (see eq.
(20)) and same &-values as above, indicates

also a considerable shift in energy transport
away from the center of curvature towards the



outer boundary of the waveguide (plotted with
negative values of £) as the curvature increases
(see Figure 4).

CONCLUSIONS

Starting from the straight circular cylinder,
the influence of a uniformly curved longitudinal
waveguide axis has been considered. Graphical
representations of the field distribution show
a continuous shift of the transported energy
towards the outer boundary, away from the
center of increasing curvature, and a poloidal
concentration near ¢ = m. In a future work
quasi-toroidal hollow waveguides with slightly
changing cross section radius a(s) will be
investigated as a generalization of the present
configuration.
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Figure 1 Torus with coordinate systems.
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Figure 3 Angular field distribution of H, for the
Fy, - torus-mode.
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Figure 2 Angular field distribution of E, for the

Fg, - torus-mode.
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Figure 4 Energy transport along a line in the plane

of curvature (¢ = 7 or Q) for the
Fy,,- torus-mode.



