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1. Introduction

The propagation of electromagnetic waves in a loss free inhomogeneous hollow waveguide with circular cross
section and uniform plane curvature of the longitudinal axis is considered. The exact solution of Maxwell’s
equations in toruslike waveguides cannot be given with the correct boundary conditions. In a torus with small
curvature the field equations can however be solved by means of an analytical approximation method. Using
the Rayleigh-Schridinger perturbation theory eigenvalues and eigenfunctions containing first order correction
terms are derived for the full spectrum of all modes including the degenerate ones. The curvature of the axis
of the waveguide is considered as a disturbance of the straight circular cylinder and the perturbed torus-field
is expanded in eigenfunctions of the unperturbed probiem. Complicated series expansions are obtained, which
can however be represented in closed form by means of the residue theorem.

2. The Wave Equation
2.1 The local toroidal coordinate system (¢, ¢, a)

The following procedure allows computing of wave propagation effects in loss free bollow waveguides with
local circular cross section and uniform curvature. The.so-called local or quasi toroidal coordinate system is
conform to the metailic boundaries and reduces in the case of infinitesimal curvature to the common circular
cylinder coordinate system. Thus the straight circular cylinder is obtained as a limitting case of the curved
structure. Figure 1 gives the relationship of the dimensionless local toroidal coordinates (£, ¢, a) with the
rectangular coordinates (x, y, 2).

Figme 1. Torus with coordiomse systems : rectangular coordinstes (x, y, 2) and local toroidal coordinates (&, ¢, a) respectively
(Q, ¢, 5) as generalized coordinates of the straight circular cylinder.

Using the transformation ¢ = af and s = Ra with @ as quasiradial length and s as longitudinal coordinate
measured along the curved axis one obtaines [1]
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with the metric coefficient h = 1 — § £ cos ¢ and the inverse aspect ratio § = a/R, where a is the minor
and R the major radius of the torus, respectively; ¢ is the poloidal and o the toroidal angle. The interior of
the torus is decribed by values of 0 < £ < 1. After the definition of the coordinate system Maxwell’s
equations must be transformed for a better formal application of the usual perturbation theoretical scheme.

.22 The field equations

In stationary fields in homogeneous, isotropic and source free media all field components get the exponential
dependence
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which is omitted in the following computations. In addition only the negative sign in the exponent is used. It
represents waves travelling in the positive s-direction. For the other direction of propagation 8 has to be
substituted by —B. We use H = hH, and E = hE. as abbreviation for the longitudinal field components
multiplied by the metric coefficient h. Then Maxwell’s equations in local toroidal components
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are transformed by elimination of the transverse fields E,, E,, H, and H, in a similar manner to [2], but where
the notation is in some way inelegant, and so the resulting equations are here given in a much more compact
and clearer operator description
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The equations (4) are the wanted coupled longitudinal equations, which perturbation theoretical treatment plays
the central role in this paper. The differential operators are written in detail
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where dimensionless quantity y = 8/(kh) and the metric coefficient h = 1 — § £ cos ¢ are used.
k = wV ue is the wave number, 6 = a/R the inverse aspect ratio, which serves as an expansion parameter
in the following perturbation computation, and
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is the coordinate dependent eigenvalue of the differential equation system (4), which can be determined using
the so far unknown propagation B [3]. E and H are the wanted transverse eigenfunctions and the wave
impedance in free space Z = V u/e is used for normalization. The perturbation operator L{ couples only
modes of the same type (EE- or HH- coupling), and the perturbation operator L{ those of different type (EH-
or HE- coupling). In the closed toroidal resonator there exists the particular case of toroidally uniform oscil-
lations (8/3c = 0), where Lj vanishes in eq. (7) because of ¥ = 0. So the differential equation system (4)
decouples, and E- or H- modes with only 3 field components are found. The resulting decoupled equations
are identical to those published in [4]. Like the coupled system (4) shows, there in contrast only exist hybrid
EH- (quasi-E) or HE- (quasi-H) modes in the hollow toroidal waveguide with generally 6 field components,
which are derived in the following chapter. Indeed first of all the field equations (4) are transformed to a
more compact appearance. By the help of a second complex plane the use of a bicomplex field intensity (5]

F=E+iZH 9
enabies a full decoupling of the field equations (4) and a scalar inhomogeneous wave equation

A = (ka)> (1 - 4®) = (ka)® - (8)
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is obtained with the new perturbation operator L* = L{ — i L{ . The so introduced i~complex plane must
strictly be separated from the j-compiex plane, which is commonly used for a more elegant description of the
time dependence ( cos wt — e/**) using complex phasors. In the following section the perturbation theoretical
treatment of the inhomogeneous bicompiex wave equation (10) is studied in detail.

3. Theoretical Perturbation Computation of Eigenvalues and Eigenfunctions

The basic idea to solve our inhomogeneous wave equation (10) is to understand the curvature as a disturbance
of the hollow waveguide with straight axis. The eigenvalues and eigenfunctions in the torus must continuously
result from the solutions of the homogeneous differential equation (5 = 0) while increasing the disturbance
6 >0). Thusmepawbeddgenmncﬁommbewmwnwdmapowawiaexpamimmfeﬂngmme
inverseaspectraﬁo&aa/R.Theexpansioncoeﬁiciemarelinearmbinaﬁonsoftbeunpcrmrbedeigen—
modes of the straight circular cylioder. Only tori with weak curvature (0 < 6 «1) are considered in this
paper. So the wanted expansions may be truncated after the linear term &. An excellent description of the
bere used Rayleigh-Schrddinger perturbation theory of first-order is given in [6].

3.1 The homogeneous wave equation
In the straight circular cylinder our wave equation (10) is reduced to
(L® + @) F® = o (11)

because of vanishing & = 0. This eigenvalue problem has a simple solution. The well known E ,,- and
H ,,- eigenmodes with 5 field components are obtained, which build a complete orthogonal set. Combining
all double indices to one eq. (11) delivers with the following normalization integral (12) using the Kronecker-
5, where F\ must be conjugated in the i-complex plane,
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and with the boundary conditions



F,‘,o) = 0 for Ey, — modes

aF® | (13)
T 0 for Hy, — modes

the unperturbed eigenfunctions

FO = o Ja(r,6) #nle) (14)

with their eigenvalues A\ = r2. In doing so the transverse eigenvalue is found as a zero of the Besselfunction
of the first kind or its derivative

= § Jmn for Ep, — modes
T { jma’  for Hp, — modes (15)

withm=0,1,2,...and a =1, 2, 3, ... . The normalization constant is

Im’ Umn) \/ %’(1 + Smo) for Ep, — modes
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The azimuthal (4 poloidal) field dependence is described by trigonometric functions
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Possible degeneracies in eigenvalue problems, if different eigenfunctions have the same eigenvalue, will be
taken into account. But first the perturbation terms of all non-degenerate eigenmodes will be computed.

3.2 Noo-degenerate Rayleigh-Schrédinger perturbation theory of first order

- Every unperturbed eigenmode with 5 field components is continuously transformed to a torus-mode with 6 field
components and the same transverse symmetry by the perturbation (curvature of the axis). These new toroidal
eigenmodes can unfortunately not be represented in closed form but they can be approximated by a series
expansion. With weak perturbation (5 < 1) the nature of the field distribution of all non-degenerate eigen-
modes is changed only very slightly. There substantially exist furthermore TM- and TE- modes with only
weak excitation of the so far missing second longitudinal component. The mode designation of the toroidal
modes can therefore be chosen in an analogous way to the straight circular cylinder [7]; thus hybrid modes
with 6 ficld components are derived, which can be classified as quasi-E- (EH-) and quasi-H- (HE-) modes (2].

For the solution of eq. (10) a linear perturbation ansatz for the bicomplex field function and the square of the
normalized propagation constant with A\, = (ka)? — 7,/h? (see eq. (8)) and the abbreviation

n, = (ﬂra)z (18)
is made

F, = F® + sFY

(1)

(19)
N, = n§°) + o9,

with F1® like in eq. (14) as E .,- or H ,,- mode of the straight circular cylinder and 7(® = (ka)? — 12 .
With



B, = B8 + 55V (20)
and from the eqs’. (18) and (19) the perturbation of the propagation constant is easily found

1 "(l)
5£ )8 B e——— (21)

P AVEN

The correction term F{’ and the change of the propagation constant n{" will be derived. ‘After substituting
eq. (19) into the inhomogeneous wave equation (10) one obtaines a differential equation for the determination
of the perturbed fields

LOFD — LF® = 25D 4 fVFO (22)
with the abbreviation

L* = L* + 29%%cos ¢ (23)
while neglecting all terms of second order in é and using the homogeneous wave equation (11). By the help

of an expansion of the perturbation term F}! in unperturbed eigenfunctions [6] with so far unknown expansion
coefficients c,,
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and the orthonormalization integral (12) the following solution is derived after some short transformations
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with the coupling integrals in form of inner products
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VA/,, cannot explicitly be specified in this short summary; one finds however, that because of the ¢-integration
in eq. (26) it is only necessary to perform the summation in the perturbation series in eq. (25) with such
4 4 pq, for which the relation p = m % 1 bolds. This is correct for the computation of the perturbation in
first order O(6) refering to the eigenfunction F, with » & mn. The summation over all 4 # », which is indeed
a double sum over all p and q with 7,, # 7,,, can 0 be reduced to a single sum over all g = 1, ..., ®
with fixed p. For that reason one obtaines

W, =0 , @n

that means the propagation constants of all non-degenerate circular cylinder eigenmodes are not altered to the
first order in the toroidal waveguide. The curvature of the axis indsed modifies the field configuration but
every mode is propagating with the same phase and group velocity as in the straight unperturbed hollow
waveguide.



3.3 Degenerate Rayleigh-Schridinger perturbation theory of first order

The only new idea of the degenerate perturbation theory is to find those linear combinations of the unperturbed
degenerate eigenfunctions, which continuously result from the perturbed eigenfunctions with decreasing per-
turbation. There exists an infinite set of two by two degenerate eigenmodes. For 2 = 1, ..., ® one has
with 7, = j,° = Jj. the following degenerate pairs of eigenfunctions

F = e Jy(tra)
x Jo(7,)
'°)= V2 J(gf){“’in“’}
12 \/}—J‘ (72 1187, cos ¢

Relative to the plane of curvature of the torus (see Figure 1) we will call the symmetrical field function (
o cos ¢) the E,,’-mode and the antisymmetrical (& — sin ¢) the E,,”-mode, respectively. For a mode
oouplewithﬁxedindexnwcmaketheansatzofasofarunknownorthogonalsubsﬁmﬁon[6].wherethemodal
index n is omitted furthermore for a clearer notation ‘

O = b F - D @9

forwhichweunexacﬂythesamepemwbaﬂonmmninthenon-degenmme(1\9}~Aﬂ=x_hb0rious
computations the perturbation of the propagation constant has been found using §®a = (ka)? - 12

(28)

80y & 5 k2 for the E,," — mode
Ba = V2 1, (30)
ﬁ(O) 2 for the E,,’ — mode

The perturbation theory shows, that a hybrid modal ansatz like in eq. (29) has no physical sense for the
E,,’ -mode. Thus the symmetrical E,,’ -mode is quasi-stable. It does not degenerately couple to the H, modes,
and therefore the computations of the non-degenerate perturbation theory aré still valid for it. That means the
E,,’ -mode couples to first order to E,, E,” and H,” modes but not to H, modes (see also in [8]). For the
antisymmetrical E,,”-mode in contrast the formalism of the degenerate perturbation theory must be used. It
strongly couples (even for the weakest curvature) to the Ho,-mode building a degenerate hybrid pair of modes.
Since we get two possible signs for the perturbation of the propagation constant $(), there exist also two
solutions for the couple of coefficients b, and b, in the orthogonal substitution (29), a fact, which matches
with the wanted two unperturbed eigenfunctions, which substitute our two hybrid wave pairs in the limitting
case of vanishing curvature _

FO = "'\}';-‘(Fﬁ?.). = FR.) . | (31)

Summarizing this section we obtain with F{% from eq. (14) the perturbed eigenfunctions of the n-th degenerate

hybrid wave pair
0) s (0
0) (F‘(‘ L'FL ) 0)
F, = FQ + 3§ 9 . _ (32)
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The degenerate eigenfunctions of the new transformed basis (31) undergo, like eq. (30) shows, a ‘level split-
ting’ for non-vanishing perturbation; thus the degeneracy is removed. A closed form representation of the field
intensities of the toroidal modes is given in the next section.

4, The Torus-Field
4.1 Series representations

Starting from the derived series expansions for the perturbation of the eigenfunctions, which are lengthy and
cumbersome and cannot explicitly be shown in this paper, the method how to get compact and closed
expressions for the torus-fields is pointed out in this section. The double sums over all x4 pg with
g=1, .., o in the eqs. (25) and (32) can be transformed in finite single sums with only two terms for
p=mkx 1. Theinnerpemnbaﬁonsaiwomaﬂqcangemﬂymkethefoﬂowhgtwoforms
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with 7, like in eq. (15) and the exponents ¥ = 2 or 3 and x = 2 or 4. A representation in closed form of
the series expansions (33) is found by means of the residue theorem and complex integration. The so reached
closed form expressions for the pole series S, and § , from eq. (33) cannot explicitly be shown in this short
paper. In the further computations they replacetbepemn'banonsenes(ﬁ)and(32)mtheﬁeldrepresentauons,
which final form will be given in the next section.

(33)

4.2 Closed form expressions of first arder

After splitting the bicomplex field function (9) in real and imaginary part of the i-complex plane the j-complex
amplitudes of the physically relevant field inteansities are obtained. For instance the explicit expressions of the
longitudinal field components multiplied by the metric coefficient h are particularly shown for the most
important hybrid mode pair F,, see eq. (32), with which the unwelcome mode conversion Hy, = E,, in cir-
cular hollow waveguide transmission lines can be described. The corresponding transversal fields can simply
be deduced by some derivatives using the system of Maxwell’s equations (3).

E, = ¥ —},-Jx(fnf) sin(p) =
n

o =S {(k0)? § I (7,8) + (34)
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with the normalization constant
N, = Vx5, (rp (36)
and the normalized propagation constant

89 = \/(ka)> -2 37

For a more profound description of the here shown method we refer to [9].
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