<u>Vektoranalysis + Vektoralgebra</u>

Aufgabe 1:

Welchen Wert hat die Divergenz des Vektorfeldes

$$\mathbf{A} = \mathbf{e}_x \, 5 \, x^2 \sin \frac{\pi \, x}{2}$$

an der Stelle x = 1? [div A(x = 1) = 10]

[div
$$\mathbf{A}(x=1)=10$$
]

Aufgabe 2:

Berechnen Sie den Ausdruck rot rot A für das Vektorfeld

$$\mathbf{A} = 3 x z^2 \mathbf{e}_x - y z \mathbf{e}_y + (x + 2 z) \mathbf{e}_z$$
.

[rot rot
$$\mathbf{A} = -6 x \mathbf{e}_x + (6 z - 1) \mathbf{e}_z$$
]

Aufgabe 3:

Gegeben ist die skalare Ortsfunktion

$$\Phi(x,y,z) = \frac{z}{x^2 + y^2} .$$

a) Berechnen Sie den Gradienten von Φ in kartesischen Koordinaten.

[grad
$$\Phi = -\frac{2 x z \mathbf{e}_x}{(x^2 + y^2)^2} - \frac{2 y z \mathbf{e}_y}{(x^2 + y^2)^2} + \frac{\mathbf{e}_z}{x^2 + y^2}$$
]

b) Formen Sie das Ergebnis in zylindrische Koordinaten um.

[grad
$$\Phi = -\frac{2z\mathbf{e}_{\rho}}{\rho^3} + \frac{\mathbf{e}_{z}}{\rho^2}$$
]

Aufgabe 4:

Zeigen Sie, dass gilt:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0.$$

TEM - Wellen

Aufgabe 1:

Die komplexe Amplitude der elektrischen Feldstärke einer TEM-Welle wird mit $0 \le \delta \le \pi/2$ durch folgenden Ausdruck beschrieben:

$$\underline{\vec{E}}(z) = E_0 \left(e^{j\delta} \vec{e}_x + e^{-j\delta} \vec{e}_y \right) e^{-jk_0 z} .$$

a) Wie lautet die reelle Zeitfunktion $\vec{E}(z,t)$?

$$[\vec{E}(z,t) = E_0 \vec{e}_x \cos(\omega t - k_0 z + \delta) + E_0 \vec{e}_y \cos(\omega t - k_0 z - \delta)]$$

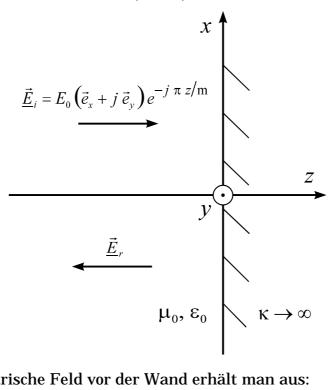
- **b)** Wie groß muss δ gewählt werden, damit folgende Polarisation vorliegt:
 - lineare Polarisation, [$\delta = 0$ oder $\delta = \pi/2$]
 - zirkulare Polarisation ? [$\delta = \pi/4$]
- c) Es gelte $E_0=1~V/m$ und $\delta=0$. Welche Wirkleistung wird im zeitlichen Mittel innerhalb einer Phasenfront von $1~m^2$ transportiert ? [P=2,655~mW]

Aufgabe 2:

Eine TEM-Welle breitet sich in Meerwasser mit den Materialkonstanten $\epsilon_{\rm r}$ = 80 , $\mu_{\rm r}$ = 1 und κ = 5 S/m aus.

- a) Es sei $f=25\,\mathrm{kHz}$. Nach welcher Distanz d_1 ist die TEM-Welle um $20\,\mathrm{dB}$ gedämpft? [$d_1=3,278\,\mathrm{m}$]
- **b)** Nun gelte $f=25\,\mathrm{MHz}$. Nach welcher Distanz d_2 ist jetzt die TEM-Welle um $20\,\mathrm{dB}$ gedämpft? [$d_2=0{,}105\,\mathrm{m}$]

Aufgabe 3:


Gegeben ist ein gerader, zylindrischer, massiver Leiter mit kreisförmigem Querschnitt (Durchmesser $D=200\,\mu\text{m}$, Material Kupfer).

- a) Wie groß ist der Gleichstromwiderstandsbelag $R_0' = R_0/l$ des Leiters ? [$R_0' = 0.558 \,\Omega/\mathrm{m}$]
- **b)** Um welchen Faktor steigt der HF-Widerstand bei den Frequenzen $f = 100 \, \mathrm{MHz}$ und $f = 10 \, \mathrm{GHz}$ jeweils gegenüber dem Gleichstromwiderstand an ? [$R_{HF}/R_0 = 7.5$ bzw. $R_{HF}/R_0 = 75$]

<u>Grenzflächen</u>

Aufgabe 1:

Eine homogene TEM-Welle mit einer zeitgemittelten Leistungsdichte von $S_i = 1 \text{ W/m}^2$ trifft, vom freien Raum (μ_0, ε_0) kommend, bei z = 0 senkrecht auf eine elektrisch ideal leitende Wand $(\kappa \to \infty)$.

Das gesamte elektrische Feld vor der Wand erhält man aus:

$$\underline{\vec{E}} = \underline{\vec{E}}_i + \underline{\vec{E}}_r .$$

- a) Welche Frequenz f hat die einfallende Welle? [f = 150 MHz]
- **b)** Bestimmen Sie den Zahlenwert von E_0 . [$E_0 = 19,41 \text{ V/m}$]
- c) Berechnen Sie die reflektierte Welle $\underline{\vec{E}}_r$. [$\underline{\vec{E}}_r = -E_0(\vec{e}_x + j \ \vec{e}_y)e^{j \pi z/m}$]
- d) Welche Polarisation hat die einfallende und welche die reflektierte Welle? [einfallende: LHC und reflektierte: RHC]
- e) Bestimmen Sie am Ort $z = -\lambda_0/2$ das zeitabhängige Magnetfeld H(t), das sich aus einfallender und reflektierter Welle zusammensetzt.

$$\left[\vec{H}(t) = \frac{-2 E_0}{Z_0} \left(\vec{e}_y \cos \omega t + \vec{e}_x \sin \omega t \right) \right]$$

Aufgabe 2:

Eine TEM-Welle mit der Frequenz $f=30\,\mathrm{MHz}$ und der Amplitude $E_0=1\,\mathrm{V/m}$ treffe senkrecht von oben auf die ebene Meeresoberfläche auf. In welcher Wassertiefe L ist die Amplitude der Welle auf $10^{-3}\,\mathrm{V/m}$ abgesunken, wenn Meerwasser die Materialkonstanten $\epsilon_r=80$, $\mu_r=1$ und $\kappa=2,5\,\mathrm{S/m}$ besitzt? Berechnen Sie zunächst den Durchlassfaktor und danach die Dämpfung im Meerwasser.

Hilfe:

$$\left| \frac{2}{1 + \sqrt{a - j b}} \right| = \frac{2}{\sqrt{\left(1 + \sqrt{c} \cos \varphi\right)^2 + c \sin^2 \varphi}} \quad \text{mit} \quad c = \sqrt{a^2 + b^2} \quad \text{und } \varphi = \frac{1}{2} \arctan \frac{-b}{a}.$$

$$\left[\begin{array}{c} |\underline{d}| = 0.0507, \ \alpha = 16.75 \,\mathrm{m}^{-1}, \ L = 23.4 \,\mathrm{cm} \end{array} \right]$$

Aufgabe 3:

Eine ebene Welle soll in Luft <u>senkrecht</u> auf eine ebene Kupferplatte der elektrischen Leitfähigkeit $\kappa = 57 \cdot 10^6$ S/m auftreffen. Die Dicke der Platte sei sehr viel größer als die Eindringtiefe δ , und es gelte $\kappa \gg \omega \, \epsilon_0$. Für denjenigen Anteil der hinlaufenden <u>Energie</u>, der reflektiert wird, gilt in sehr guter Näherung:

$$\left| \underline{r} \right|^2 = \frac{\frac{\kappa}{\omega \, \varepsilon_0} - \sqrt{\frac{2 \, \kappa}{\omega \, \varepsilon_0}} + 1}{\frac{\kappa}{\omega \, \varepsilon_0} + \sqrt{\frac{2 \, \kappa}{\omega \, \varepsilon_0}} + 1}.$$

a) Formen Sie diesen Ausdruck für $\kappa/(\omega\,\epsilon_0)\gg 1$ weiter um und zeigen Sie, dass näherungsweise gilt:

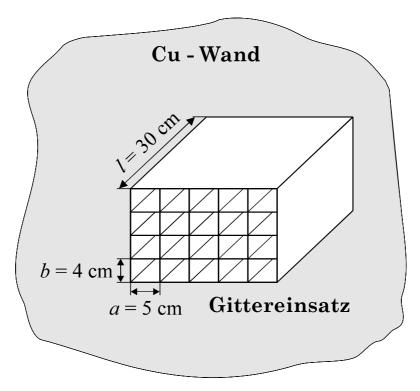
$$\boxed{\left| \, \underline{r} \, \right|^2 \approx 1 - 2 \, \frac{\omega}{c_0} \, \delta} \quad \text{mit der Eindringtiefe} \quad \delta = \sqrt{\frac{2}{\omega \, \mu_0 \kappa}} \, .$$

<u>Hilfe:</u> Machen Sie sinnvolle Vernachlässigungen und benutzen Sie $\frac{1}{1+x} \approx 1-x$

- **b)** Welchen Wert hat $|\underline{r}|^2$ bei der Frequenz f = 128,2 GHz?
- c) Wie groß ist dann der transmittierte Energieanteil?

Antworten:
$$|\underline{r}|^2 = 99.9 \% \text{ und } 1 - |\underline{r}|^2 = 0.1 \%$$

Aufgabe 4:

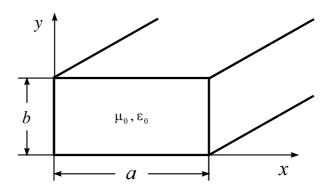

Eine TEM-Welle breitet sich mit der Amplitude $E_0 = 1 \text{ V/m}$ in destilliertem Wasser mit den Materialkonstanten $\epsilon_r = 81$, $\mu_r = 1$ und $\kappa = 0$ aus. Sie fällt spolarisiert schräg auf eine ebene Trennfläche Wasser-Luft ein.

- a) Ab welchem Einfallswinkel tritt Totalreflexion ein? [$\theta_c = 6.38^{\circ}$]
- **b)** Falls der Einfallswinkel $\theta_1 = 45^\circ$ beträgt, wie groß ist dann der Betrag der Feldstärke im Luftraum
 - I. direkt am Ort der Trennfläche? [$|\underline{E}_t(z=0)| = 1,42 \text{ V/m}$]
 - II. $\lambda_0/4$ von der Trennfläche entfernt? [$|\underline{E}_t(z=\lambda_0/4)| = 73.2 \,\mu\text{V/m}$]

Hohlleiter

Aufgabe 1:

Eine Messkabine soll durch eine Auskleidung mit 0,5 mm dickem <u>Kupferblech</u> der elektrischen Leitfähigkeit $\kappa_{\text{Cu}} = 57 \cdot 10^6 \, \text{A/(Vm)}$ gegen elektromagnetische Störfelder geschirmt werden. Zu Beleuchtungszwecken ist ein Fenster vorgesehen, in welchem sich ein aus Blechen gefertigter Gittereinsatz befindet, der aus einer Vielzahl paralleler <u>Rechteckrohre</u> mit den Innenmaßen 5 cm x 4 cm bei 30 cm Länge besteht.

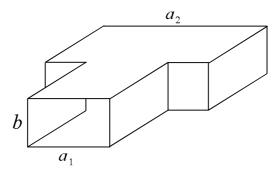

Berechnen Sie näherungsweise folgende Werte und geben Sie jeweils eine physikalische Begründung für Ihren Ansatz an.

- a) Bei welcher <u>tiefsten</u> Frequenz kann man eine Schirmdämpfung von 80 dB gerade noch erreichen? [f_{min} = 1,5 MHz]
 - <u>Hinweis</u>: Bei dieser Dämpfung ist von einer äußeren Störfeldstärke im inneren nur noch 0,01 % nachweisbar.
- **b)** Bei welcher <u>höchsten</u> Frequenz ist die geforderte Schirmdämpfung gerade noch erzielbar? [$f_{max} = 2,6 \text{ GHz}$]

Hochschule Ravensburg - Weingarten	Studiengang EI	Prof. DrIng. K. W. Kark
------------------------------------	----------------	-------------------------

Aufgabe 2:

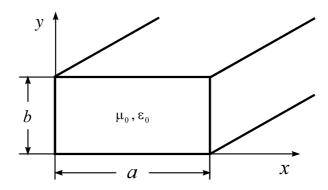
Sie sollen die Querabmessungen a und b eines Rechteckhohlleiters dimensionieren.



Der Hohlleiter soll bei f = 10 GHz mit der H_{10} -Welle betrieben werden.

- a) Wie groß muss die Hohlleiterbreite a gewählt werden, damit die H_{10} -Welle 25 % <u>oberhalb</u> ihrer cutoff-Frequenz liegt ? [a = 1,874 cm]
- **b)** Wie groß muss die Hohlleiterhöhe b gewählt werden, damit die H_{01} -Welle 25 % <u>unterhalb</u> ihrer cutoff-Frequenz liegt ? [b = 1,124 cm]
- c) Geben Sie in GHz die cutoff-Frequenzen der H_{10} -, H_{01} und H_{11} -Welle an, wenn Sie die Querabmessungen wie in den Aufgabenteilen **a)** und **b)** wählen. [$f_c^{H_{10}} = 8 \text{ GHz}$, $f_c^{H_{01}} = 13,33 \text{ GHz}$, $f_c^{H_{11}} = 15,55 \text{ GHz}$]

Aufgabe 3:


Ein luftgefüllter Rechteckhohlleiter der Breite a_1 und der Höhe b mit $a_1 > b$ wird mit seiner Grundwelle betrieben.

Der Hohlleiter erweitere sich sprunghaft in der H-Ebene auf die neue Breite $a_2 > a_1$. Die Höhe *b* bleibe unverändert.

- a) Wie hoch muss die Betriebsfrequenz f_{\min} mindestens sein, damit im kleineren Hohlleiter die Grundwelle ausbreitungsfähig ist? [$f_{min} = c_0/(2 a_1)$]
- **b)** Wie hoch darf die Betriebsfrequenz f_{\max} höchstens werden, damit im größeren Hohlleiter keine Oberwelle ausbreitungsfähig ist? [$f_{\text{max}} = c_0/a_2$]
- c) Welche nutzbare Bandbreite $B = f_{\text{max}} f_{\text{min}}$ hat demnach der Hohlleiterübergang für $a_1 = 40,39 \text{ mm}$ und $a_2 = 1,5 \cdot a_1$? [B = 1,237 GHz]

Aufgabe 4:

- a) Zeichnen Sie die transversalen Feldbilder der $E_{\rm 13}$ und der $H_{\rm 05}$ Welle in obigem Rechteckhohlleiter.
- **b)** Bestimmen Sie die <u>Phasengeschwindigkeiten der</u> E_{13} und der H_{05} Welle in obigem Rechteckhohlleiter. [$v_p = c_0 / \sqrt{1 \left(m \pi/k \, a\right)^2 \left(n \pi/k \, b\right)^2}$]
- c) In welchem Verhältnis müssen die Kantenlängen a und b dieses Rechteckhohlleiters stehen, damit die beiden <u>Phasengeschwindigkeiten</u> aus **b**) gleich werden ? [b = 4a]
- d) Für welches andere Kantenverhältnis a/b wird bei gegebenem Umfang $U=2\left(a+b\right)$ die <u>Gruppengeschwindigkeit der E11-Welle maximal ? [a/b=1] Wie groß ist dann dieser Maximalwert, falls gilt: $ka=2\pi$? [$v_g=2,12\cdot10^8$ m/s]</u>

Aufgabe 5:

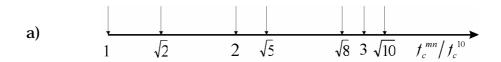
Wie heißen die ersten 6 Eigenwellen in einem Rechteckhohlleiter für

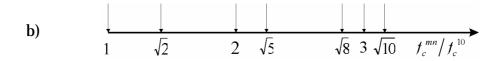
a) ein Kantenverhältnis von
$$a/b=1$$
,

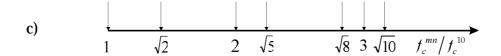
$$[H_{10} + H_{01}, H_{11} + E_{11}, H_{20} + H_{02}]$$

b) ein Kantenverhältnis von
$$a/b = 2$$
 und

$$[\,H_{10},H_{20}+H_{01},H_{11}+E_{11},H_{21}+E_{21}\,]$$


c) ein Kantenverhältnis von
$$a/b = 3$$
?


$$[H_{10}, H_{20}, H_{01} + H_{30}, H_{11} + E_{11}]$$


<u>Hinweis</u>: Benutzen Sie die Beziehung

$$\frac{f_c^{mn}}{f_c^{10}} = \sqrt{m^2 + (a/b)^2 n^2}$$

und tragen Sie die Wellen an der richtigen Stelle ein.

